Journal of the American Chemical Society, Vol.135, No.17, 6494-6503, 2013
Rattle-Structured Multifunctional Nanotheranostics for Synergetic Chemo-/Radiotherapy and Simultaneous Magnetic/Luminescent Dual-Mode Imaging
Most hypoxic tumors are insensitive to radiation, which is a major obstacle in the development of conventional radiotherapy for tumor treatment. Some drugs, such as cisplatin (CDDP), have been extensively used both as an anticancer drug and clinically as a radiosensitizer to enhance radiotherapy. Herein, we develop rattle-structured multifunctional up-conversion core/porous silica shell nanotheranostics (UCSNs) for delivering CDDP to tumors for synergetic chemo-/radiotherapy by CDDP radiosensitization and magnetic/luminescent dual-mode imaging. UCSNs had a dynamic light scattering diameter of 79.1 nm and excellent water dispersity and stability. In vitro studies showed that CDDP loaded in UCSNs (UCSNs-CDDP) was more effective than free CDDP as a radiosensitizer. After injection, UCSNs-CDDP also demonstrated unambiguously enhanced radiotherapy efficacy in vivo. Our report aims at presenting a novel strategy in biomedical nanotechnology that allows simultaneous dual-mode imaging and localized therapy via synergetic chemo-/radiotherapy, which may achieve optimized therapeutic efficacy in cancer treatment.