화학공학소재연구정보센터
Journal of Adhesion Science and Technology, Vol.27, No.10, 1069-1079, 2013
Reliability analysis of bonded joints with variations in adhesive thickness
Bonded joints are used in several industrial applications as a surrogate of more expensive repairs, but their reliability must be ascertained. Failure in a bonded joint mainly occurs in the adhesive due to stress concentrations that directly depend on the adhesive thickness. In practice, it is difficult to ensure a good accuracy of the final adhesive thickness, leading to uncertainty to its spatial variability. This uncertainty greatly influences the strength of the bonded joint. This work deals with one of the main key issues in bonded joints: the influence of the spatial variations in the adhesive thickness on the reliability of the joint and an excessive shear stress level caused by the adhesive thickness variations may lead to failure. This paper provides reliability analysis by considering the adhesive thickness as a stochastic field. The experimental thickness field is obtained so as to identify the stochastic parameters. These parameters are then introduced in a structural reliability model to evaluate the failure probability. Results show the influence of adhesive thickness uncertainty on bonded joint failure.