화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.3, No.3, 482-490, September, 1992
금속산화물 전극을 사용한 Furfuryl alcohol의 양극산화
Anodic Oxidation of Furfuryl Alcohol Using Metal Oxide Electrodes
초록
세종류의 금속산화물 전극을 양극으로 사용하여 methanol 용액중에서 furfuryl alcohol을 양극산화 시켜 2,5-dimethoxy-2,5-dihydrofurfuryl alcohol을 전해합성 하였다. 각 전극들은 티타늄 재질상에 산화주석(SnO2)과 삼산화이안티몬(Sb2O 3)의 반도체 혼합물층을 전기로 내에어 만들고, 그 위에 양극산화방법으로 α-PbO2, β-PbO2, MnO2등의 금속산화물을 전착(electrodeposition)하여 3종의 전극을 제작하였다. 이산화납 전극이 이산화망간 전극에 비하여 양극 내식성이 우수하였으며 생성물의 수율(92%)도 백금전극을 사용했던 결과와 대등하였다.
2,5-dimethoxy-2,5-dihydrofurfuryl alcohol was electrosynthesized from furfuryl alcohol in methanol solution by using three kinds of metal oxide anode. The electrods were prepared by the following process : Thin layer of semiconducting material such as tin(Ⅳ)oxide and antimony(Ⅲ)oxide was made on the titanium base metal in an electric furnace. The titanium metal block with the layer was coated with α-PbO 2, β-PbO2, and MnO2 In each electrolytes by anodic deposition, respectively. The lead dioxide electrodes showed better anti-corrosive property than the manganase dioxide electrode. The yield of the product was 92% which is almost the same as the one with conventional platinum electrodes.
  1. Weinberg NL, Weinberg HR, Chem. Rev., 4, 449 (1968) 
  2. Taylor RL, Chem. Met. Eng., 44, 558 (1937)
  3. Shuster N, Bakinsky AD, O'Leay KJ, Paper Presented at the Electrochemical Society Meeting, Washington, D.C., May 2-7 (1976)
  4. Nohe H, Beck F, U.S. Patent, 3,899,401
  5. Othmer K, "Encyclopedia of Chemical Technology," Edited by Wiley-Interscience, Third Edition, 8, 696 (1979)
  6. Kovsman EP, Freydlin GN, Tyurin YM, Sov. Chem. Ind., 13 (1973)
  7. U.S. Patent, 3,652,430, Mar. 28 (1972)
  8. Fioshin MY, Electrochemia, 18, 678 (1982)
  9. Jagannathan E, Aantharaman PN, Bull. Electrochem., 4, 481 (1988)
  10. Degner D, U.S. Patent, 4,411,746, Oct. 25 (1983)
  11. Baker RA, J. Electrochem. Soc., 109, 337 (1962)
  12. Narasimham KC, Udupa HVK, Electrochem. Sci. Tech., 123, 1294 (1976)
  13. Munichandraiah N, Sathyanarayana S, J. Appl. Electrochem., 17, 22 (1987) 
  14. Drozdetskaya EP, Skripchenko VI, Soviet Chem. Ind., 16, 479 (1984)
  15. Rethinaraj JP, Visvanathan S, Mater. Chem. Phys., 27, 337 (1991) 
  16. Hinden JM, U.S. Patent, 4,444,642 (1984)
  17. Lewis DL, U.S. Patent, 4,028,215 (1977)
  18. Katz M, U.S. Patent, 4,435,313 (1984)
  19. Shono T, Matsumura Y, 化學, 36, 426 (1981)
  20. Tanaka H, Kobayashi Y, Torii S, J. Org. Chem., 41, 3482 (1976) 
  21. Torii S, Tanaka H, Okamoto T, Bull. Chem. Soc. Jpn., 45, 2783 (1972) 
  22. Shono T, Matsumura Y, Hamaguchi H, J. Chem. Soc.-Chem. Commun., 712 (1977)
  23. Clauson-Kaas N, Acta Chem. Scand., 9, 17 (1955)
  24. Leir CM, J. Org. Chem., 35, 3203 (1970)