Industrial & Engineering Chemistry Research, Vol.52, No.12, 4443-4449, 2013
Hexadecane Cracking in a Hybrid Catalytic Pulsed Dielectric Barrier Discharge Plasma Reactor
In the present work, cracking of a model heavy hydrocarbon (hexadecane) in a nanosecond pulsed catalytic dielectric barrier discharge (DBD) plasma reactor has been investigated. The effect of different commercial catalyst materials based on alumina, titania, and silica has been considered on the reactor performance and products distribution. The reactor performance increases significantly when the discharge zone is packed with catalyst granules. Energy efficiency and hydrogen concentration in the produced gas vary between 36.98 and 194.44 lit/kWh and 17.7% and 63.7%, respectively. The highest energy efficiency was achieved when the plasma was packed with Mo-Ni/Al2O3 catalyst for 52.3 W power input. In this condition, the production rate and concentration of hydrogen have been 108.03 mL/min and 63.7%, respectively. The breakdown voltage is decreased significantly when the reactor is packed with TiO2 based catalyst.