Industrial & Engineering Chemistry Research, Vol.52, No.10, 3805-3815, 2013
A Comprehensive Infrastructure Assessment Model for Carbon Capture and Storage Responding to Climate Change under Uncertainty
In this study, a comprehensive infrastructure assessment model for carbon capture and storage (CiamCCS) is developed for (i) planning a carbon capture and storage (CCS) infrastructure that includes CO2 capture, utilization, sequestration and transportation technologies, and for (ii) integrating the major CCS assessment methods, i.e., techno-economic assessment (TEA), environmental assessment (EA), and technical risk assessment (TRA). The model also applies an inexact two-stage stochastic programming approach to consider the effect of every possible uncertainty in input data, including economic profit (i.e., CO2 emission inventories, product prices, operating costs), environmental impact (i.e., environment emission inventories) and technical loss (i.e., technical accident inventories). The proposed model determines where and how much CO2 to capture, transport, sequester, and utilize to achieve an acceptable compromise between profit and the combination of environmental impact and technical loss. To implement this concept, fuzzy multiple objective programming was used to attain a compromise solution among all objectives of the CiamCCS. The capability of CiamCSS is tested by applying it to design and operate a future CCS infrastructure for treating CO2 emitted by burning carbon-based fossil fuels in power plants throughout Korea in 2020. The result helps decision makers to establish an optimal strategy that balances economy, environment, and safety efficiency against stability in an uncertain future CCS infrastructure.