화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.3, No.2, 349-359, June, 1992
막분리 기술을 위한 액체염료 제조에 관한 연구
Preparation of Storage-Stable Liquid Dyes by Membrane Separation Technology
초록
염료속에 함유된 무기염(NaCl, Na2SO4)의 선택적 제거를 위해 역확산과 역삼투를 결합한 방법과 nanofiltration(NF)을 각각 이용하였다. 역확산에 의한 염의 제거율은 염의 종류에 따라 1회(one pass)에 1∼30%를 나타냈으며 염과 염료의 분리비는 10∼500의 매우 큰 값을 갖는 반면 염료의 손실율은 0.3% 이하였다. 염료용액을 순환시킬수록 음이온인 Cl- 이온의 제거율이 증가하고 양이온인 Na+ 이온의 제거율이 감소하는 도난투석현상이 관찰되었다. 또한 공급용액의 유속이 염의 제거에 미치는 영향을 살펴보았다. 역확산에 의해 염이 제거된 염료를 평판형 역삼투막을 사용하여 농축하였으며 Cl- 이온의 배제율을 solution-diffusion 모델식에 적용하였다 2회의 Diafiltration(DF)을 수행한 NF에서도 역확산에서와 마찬가지로 도난투석에 의해 Cl- 이온의 배제율 감소와 음배제율을 관찰하였다. 특히 두번째 DF에서 도난투석의 효과는 더욱 크게 나타났다.
Studies were carried out on the selective removal of inorganic salts such as NaCl and Na2SO4 from dye solution, using counter diffusion-reverse osmosis and nanofiltration, respectivey. For the dye solution used in the experiments, 1 to 30% of salts were removed by counter diffusion while the loss of dye molecules was less than 0.3%. The separation factors by one pass operation were 10-500 according to ionic species. In five successive operations, removals of anion(Cl-) increased but those of cation(Na+) decreased due to the Donnan effect. Effects of feed flow rate on removal efficiencies of various ions were also observed at constant flow rate of stripping water. Reverse osmosis of desalted dye solution by counter diffusion was conducted to prepare highly concentrated liquid dyes. The rejection efficiency of dye molecules was greater than 99%. For the rejection efficiency of chloride ion, experimental values were compared with theoretical ones based on solution-diffusion model. Two stage diafiltration was performed in nanofiltration. The rejection efficiency of chloride ion was continuously decreased due to the Donnan dialysis and even negative rejection was observed. The Donnan effect was more pronounced in the second diafiltration.
  1. Weberndoerfer V, Brunnmueller F, Eisert M, Bermes R, U.S. Patent, 4,560,745 (1985)
  2. Tsuyoshi E, Makoto S, Masatsune K, European Patent, 181,226 (1986)
  3. Haruta M, U.S. Patent, 4,677,445 (1987)
  4. Colberg H, Mayer U, Roske E, Herrmann M, Puetter H, U.K. Patent, Appl., 2,170,212 (1986)
  5. Kemp JA, U.S. Patent, 1,359,898 (1978)
  6. Erzinger P, U.S. Patent, 4,452,608 (1984)
  7. Fortsch B, Rabassa A, Bruttel B, U.S. Patent, 4,689,048 (1987)
  8. Haruta M, Ozawa K, Hamamoto T, U.K. Patent, Appl., 2,139,641 (1984)
  9. Lim SL, Fane AG, Fell CJD, 7th World Congress of Food Science and Technology, Singapore (1987)
  10. Lau SLJ, Johnson RA, Lefbrre MS, IMTEC 88, H34-H38, Univ. of N.S.W., Australia (1988)
  11. Shrinx Research Institute Pty. Ltd. Australia (1986)
  12. Scott D, Proceedings of the International Technology Symposium, Sydney, Australia, Oct. (1985)
  13. Sangkanparan H, Linaya C, THe 3rd ASEAN Workshop on Membrane Technology, Singapore, Apr. (1987)
  14. Lefebvre MSM, Robbins RG, Vancouver, Canada, Aug. (1985)
  15. Johnson RA, Ness JN, Hsu D, Sloane GE, Maritsugu T, Mill Technology Division, Apr. (1984)
  16. Park JS, Lee CH, J. Korean Ind. Eng. Chem., 2(4), 399 (1991)
  17. 염료편람, 유기합성 화학회 편, 동경, 932 (1970)
  18. Donnan FG, Chem. Rev., 1, 73 (1924) 
  19. Atkins PW, Phys. Chem., 3rd ed., Oxford University Press, 609 (1986)
  20. Lonsdale HK, Pusch W, J. Chem. Soc., 71, 501 (1975)
  21. Tsuru T, Urairi M, Nakao S, Kimura S, Desalination, 81, 219 (1991) 
  22. Perry M, Linder C, Desalination, 71, 233 (1989) 
  23. Akred AR, Fane AG, Friend JP, Proceedings, A.C.S. Symposium on "Ultrafiltration Membranes and Applications," 1-19 (1979)
  24. Soltanieh M, Gill WN, Chem. Eng. Dommun., 12, 279 (1981)
  25. Burghoff HG, Lee KL, Pusch W, J. Appl. Polym. Sci., 25, 323 (1980)