Applied Biochemistry and Biotechnology, Vol.169, No.4, 1197-1218, 2013
Biodegradation of Dichloromethane Along with Other VOCs from Pharmaceutical Wastewater
The present study dealt with the interaction of dichloromethane (DCM) with other non-chlorinated organic solvents such as methanol, acetone, toluene, and benzene, which are commonly present in the pharmaceutical wastewater, during biodegradation by mixed bacterial consortium. Non-chlorinated solvents were easily degradable even at an initial concentration of 1,000 mg/L, whereas only 20 mg/L of DCM was degraded when used as sole carbon source. The Monod Inhibition model appears to simulate the single pollutant biodegradation kinetics satisfactorily. In dual substrate systems, low concentrations (100 mg/L) of non-chlorinated solvents did not interfere with the DCM degradation. Non-interaction sum kinetics model was able to simulate the experimental results well in this case. However, high concentrations of non-chlorinated solvents (1,000 mg/L) affected the DCM degradation significantly. There was severe competition between the chlorinated and the non-chlorinated solvents. In this case, competitive inhibition model predicted the experimental results better compared to co-metabolism model. In multiple substrate system also, presence of DCM prolonged the degradation of the other non-chlorinated solvents. However, the presence of non-chlorinated compounds accelerated the degradation of DCM. The results of the present study may be helpful in optimal design of biological systems treating mixed pollutants.
Keywords:Biodegradation;Dichloromethane;Substrate interaction;Competitive inhibition model;Pharmaceutical wastewater