화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.3, No.1, 88-99, March, 1992
산화티타늄 피막의 광 전기분해 특성에 관한 연구
A Study of Photoelectrolysis of Water by Use of Titanium Oxide Films
초록
광 전기분해시 양극으로 사용되는 산화티타늄 반도체 전극의 안정성을 증대시키고 효율향상을 위해서 순수한 티타늄 전극을 양극 산화법, 전기로 산화법, 불꽃 산화법으로 산화 피막을 제조하였으며 In을 Ti와 TiO2소지에 전기도금을 한 후 전기로 산화법으로 혼합 산화물을 제조하였다. 또한 Al2O3와 NiO는 진공증착 방법을 이용하여 Ti소지위에 증착시킨 후 전기로 산화법을 이용하여 혼합 산화물을 제조하였다. 에너지변환 효율(η)은 인가전위에 따라서 다른 값을 갖는데 0.6V로 계산하여 보면 1200℃의 불꽃으로 2분간 산화시킨 전극이 0.98%로 가장 큰 값을 가졌으며 양극 산화법으로 제조한 전극의 η는 0.14%로 작은 값을 보여 주었다. 한편 800℃ 전기로에서 10분간 산화시킨 전극의 η는 0.57%로 띠간 에너지는 2.9eV로 나타났다. 한편 In을 Ti 및 TiO2 소지위에 전기도금시킨 전극의 η는 0.8%였으며 인가전위가 증가함에 따라서 η는 증가하였다. 그러나 A12O3와 NiO를 Ti소지위에 진공증착시킨 전극의 η는 다른 전극들에 비해서 가장 낮은 값을 나타내었다.
For the development of semiconducting photoelectrode to be more stable and efficient in the process of photoelectrolysis of the water, pure titanium rods were oxidized by anodic oxidation, furance oxidation and flame oxidation and used as electrodes. The Indium islands were formed by electrodeposition of "In" thin film on TiO2 and Ti by electrodeposition. Also A12O3 and NiO islands were coated on Ti by the electron-beam evaporation technique. The maximum photoelectrochemical conversion efficiency(η) was 0.98% for flame oxidized electrode(1200℃ for 2min in air). Anodically oxidized electrodes have photoelectrochemical conversion efficiency of 0.14%. Furnace oxidized electrode(800℃ for 10min in air) has 0.57% of photoelectrochemical efficiency and shows a band-gap energy of about 2.9eV. The In23 coated TiO2 exhibits 0.8% of photoelectrochemical efficiency but much higher value of η was obtained with the Increase of applied blas voltage. However, A12O3 or NiO coated TiO2 shows much low value of η. The efficiency was dependent on the presence of the metallic interstitial compound TiO0+x(x< 0.33) at the metal-semiconductor interface and the thickness of the suboxide layer and the external rutile scale.
  1. Fujishima A, Honda K, Bull. Chem. Soc. Jpn., 48, 1041 (1975) 
  2. Gissler W, Lensi PL, Pizzini S, J. Appl. Electrochem., 6, 9 (1976) 
  3. Haneman D, Holmes P, Sol. Energy Mater. Sol. Cells, 1, 233 (1976)
  4. Blondeau G, Froelicher M, Froment M, J. Less-Common Metals, 56, 215 (1977) 
  5. Houlihan JF, Madacsi DP, Walsh EJ, Mulay LN, Mater. Res. Bull., 11, 1191 (1976) 
  6. Salvador P, Sol. Energy Mater. Sol. Cells, 1, 413 (1980)
  7. Rao KVC, Rao MR, Nair MP, Int. J. Hydrog. Energy, 14(5), 295 (1989) 
  8. Babu KSC, Srivastava ON, Int. J. Hydrog. Energy, 14(8), 529 (1989) 
  9. Augustynski J, Hinden J, Staldler C, J. Electrochem. Soc., 124, 1063 (1977) 
  10. Alan F, "Fundamentals of Solar Cells," Academic Press, New York (1983)
  11. Myamlin VA, Pleskov YV, "Electrochemistry of Semiconductors," Plenum, New York (1967)
  12. Ghosh AK, Maruska HP, J. Electrochem. Soc., 124(10), 1516 (1977) 
  13. Johnson EJ, Willardson RK, Beer AC, "Semiconductors and Semimetals," Vol. 3, ch. 6, Academic Press, New York (1967)
  14. Kofstad P, Hauffe K, Kjollesdal H, Acta Chem. Scand., 12, 239 (1958)
  15. Hurlen T, J. Inst. Metals, 89, 128 (1960)
  16. Holmberg B, Acta Chem. Scand., 16, 1245 (1962)
  17. Antonucci V, Giordano N, Bart JCJ, Int. J. Hydrog. Energy, 7(10), 769 (1982) 
  18. Leitner K, Schultze JW, Stimming U, J. Electrochem. Soc., 133, 1561 (1986) 
  19. PeraldoBicelli L, Pedeferri P, Razzini G, Int. J. Hydrog. Energy, 11(10), 647 (1986) 
  20. Sibert ME, J. Electrochem. Soc., 110, 65 (1963)
  21. Ammar IA, Kamal I, Electrochim. Acta, 16, 1539 (1971) 
  22. McCann JF, Bockris JOM, J. Electrochem. Soc., 128, 1719 (1981)