화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.51, No.3, 394-402, June, 2013
아민-티타늄착체 촉매상에서 1,3-부타디엔의 삼량화반응에 의한 싸이클로도데카트리엔의 합성
Synthesis of Cyclododecatriene from 1,3-Butadiene by Trimerization over Amine-Titanium Complex Catalyst
E-mail:
초록
티타늄화합물과 티타늄부톡사이드를 각각 디아민과 결합시켜 새로운 구조의 중합촉매를 개발하였으며, 이들은 부타디엔의 삼중고리화를 통한 싸이클로도데카트리엔(CDT)의 합성반응에 대해 높은 촉매활성을 나타내었다. CDT합성반응은 고압식 액상반응기를 사용한 배취형 반응계에서 수행하였으며, 반응온도, 촉매의 종류, 촉매량, Al/Ti의 몰비 및 고정화방법 등이 생성물 CDT의 생성수율에 미치는 영향을 관찰하였다. 디아민과 4염화티타늄을 1:1로 결합시킨 촉매는 생성물 CDT에 대하여 90% 이상의 높은 선택성을 보였다. 생성된 CDT 중의 TTT/TTC 입체이성체비는 티타늄에 결합된 디아민의 종류와 Ti/디아민의 비율 등에 따라 달라졌다. 이들 균일계 착체는 담체상에 고정화시켜 사용할 수 있었으며, 티타늄 주촉매는 반응 중 추출되지 않고 활성을 유지하면서 여러 번 사용이 가능하였다. 실리카 담체보다는 탄소담체를 사용하여 티타늄화합물을 고정한 촉매가 보다 높은 활성을 보였으며, 특히 아미노실란 만을 중합시켜 제조한 담체에 티타늄을 결합시키면 BD의 전환율도 높고 CDT에 대한 선택도도 높게 나타났다.
The new complex catalysts were synthesized by the reaction of titanium compounds (titanium chloride or titanium butoxide) and diamines in this work, and they showed very high catalytic activities for the cyclododecatriene (CDT) synthesis from 1,3-butadiene through trimerization. CDT synthetic reaction was performed in an autoclave reactor, and the effects of reaction temperature, type of catalyst, catalyst amount added into the system, the mole ratio of Al/Ti and immobilization method were investigated on the yield of product CDT. The titanium complex catalyst combined to diamine with 1:1 ratio showed high selectivity to CDT more than 90%. The ratio of TTT-CDT/TTC-CDT isomers in the product revealed as different values, depending on the type of diamine combined to titanium and Ti/diamine ratios. Those homogeneous complexes could be used as a heterogenized catalyst after anchoring on the supports, and the immobilized titanium catalyst retained the catalytic activities for several times in the recycled reactions without leaching. The carbon support containing titanium has exhibited superior activity to the silica support. Especially, when the titanium complex was anchored on the support which was fabricated by the hydrolysis of tripropylaminosilane itself, the resulting titanium catalyst showed the highest BD conversion and CDT selectivity.
  1. Takahasi H, Yamaguchi M, J. Org. Chem., 28, 1409 (1963)
  2. Polacek J. et al., J. of Mol. Catal., 29(2), 165 (1985)
  3. Moberg C, Rakos L, J. Organomet. Chem., 335(1), 125 (1987)
  4. Diel BN, Han M, White JM, J. Label. Compd.Radiopharm., 50, 407 (2007)
  5. Ube industry, “The method of Cyclododecatriene Synthesis,” JP2002-161054 (2002)
  6. Ube industry, “The method of Cyclododecatriene Synthesis,” P2002-60353 (2002)
  7. Ube industry, “The method of Cyclododecatriene Synthesis,” JP2005-132770 (2002)
  8. Ube industry, “The method of Cyclododecatriene Synthesis,” JP2002-139144 (2002)
  9. Herwig J, Bruuing W, Roos M, Wilczok N, “Process for Preparing Cyclododecatriene,” US 0265184 (2007)
  10. Wilczok N, Schiffer T, Wiedenbusch P, “Process for Preparing Cyclododecatrienes with Recycling of the Catalyst,” US 6403851 B1 (2002)
  11. Shearer AS, Miguel YR, Minich EA, Pochan D, Jenny C, Inorganic Chem. Comm., 10, 262 (2007)