화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.25, No.2, 67-75, May, 2013
Examination of thermo-gelation behavior of HPMC and HEMC aqueous solutions using rheology
E-mail:
In this study, the thermo-gelation behavior of hydroxypropyl methylcellulose (HPMC) and hydroxyethyl methylcellulose (HEMC) were examined by rheology. Temperature sweep shear viscosity measurements revealed a significant decrease in the shear viscosity of HPMC and HEMC at the aggregation temperature (Tagr), which depended on the substitution type (HPMC or HEMC) and degree of substitution. In the dynamic test, G’ decreased slightly at Tagr and increased significantly at the gelation temperature (Tgel). The shear viscosity and shear storage modulus (G’) can be utilized complementarily to examine Tagr and Tgel. Tagr could be detected clearly by the shear viscosity measurement but could not be observed in the G’ measurement. On the other hand, Tgel could not be detected in the shear viscosity measurement although it can be clearly recognized in G’ measurement. Conclusively, the two rheological measurements could be utilized complementarily in detection of Tagr and Tgel. In the meanwhile, HPMC with more hydrophobic residues (methoxy and hydroxypropyl residues) showed smaller Tagr and Tgel than HEMC, which has hydroxyethyl and methoxy groups. Tagr and Tgel decreased with increasing number of hydrophobic groups. Molecular weight almost did not affect Tagr and Tgel of HPMC solution.
  1. Bain MK, Bhowmik M, Ghosh SN, Chattopadhyay D, J. Appl. Polym. Sci., 113(2), 1241 (2009)
  2. Bajwa GS, Sammon C, Timmins P, Melia CD, Polymer, 50(19), 4571 (2009)
  3. Ban SJ, Rico CW, Um IC, Kang MY, Food Chem.Toxicol., 50, 130 (2012)
  4. Ban SJ, Rico CW, Um IC, Kang MY, Int. J. Mol. Sci., 13(3), 3738 (2012)
  5. Bhowmik, Das MS, Sinha J, Bag S, Chattopadhyay D, Ghosh LK, Asian J. Chem., 22, 2147 (2010)
  6. Blouin, Moreau SMF, Weiss P, Daculsi G, Basle MF, Chappard D, J. Biomed. Mater. Res. Part A., 78A, 570 (2006)
  7. Bodvik R, Dedinaite A, Karlson L, Bergstrom M, Baverback P, Pedersen JS, Edwards K, Karlsson G, Varga I, Claesson PM, Colloid Surf. A-Physicochem Eng. Asp., 354, 162 (2010)
  8. Campos-Aldrete ME, Villafuerte-Robles L, Eur. J. Pharm. Biopharm., 43, 173 (1997)
  9. Chen YH, Zhang M, Liu WT, Li GY, Korea-Aust. Rheol. J., 23, 41 (2011)
  10. Chirico S, Dalmoro A, Lamberti G, Russo G, Titomanlio G, J. Control. Release., 122, 181 (2007)
  11. Dow Chemical Company, Methocel cellulose ethers technical handbook, Dow Chemical Company. http://msdssearch.dow.com/PublishedLiteratureDOWCOM/dh_004f/0901b8038004fa1b.pdf?filepath=methocel/pdfs/noreg/192-01062.pdf&fromPage=GetDoc (2002)
  12. Ferry JK, Viscoelastic properties of polymers, 3rd edn.Wiley, New York (1980)
  13. Hussain S, Keary C, Craig DQM, Polymer., 43, 5623 (2003)
  14. Hyun K, Lim HT, Ahn KH, Korea-Aust. Rheol. J., 24(2), 113 (2012)
  15. Kita R, Kaku T, Kubota K, Dobashi T, Phys. Lett. A., 259, 302 (1999)
  16. Kobayashi K, Huang CI, Lodge TP, Macromolecules, 32(21), 7070 (1999)
  17. Liu SQ, Joshi SC, Lam YC, J. Appl. Polym. Sci., 109(1), 363 (2008)
  18. Liu SQ, Joshi SC, Lam YC, Tam KC, Carbohyd. Polym., 72, 133 (2008)
  19. Maki KC, Davidson MH, Malik KC, Albrecht HH, O'Mullane J, Daggy BP, Am. J. Cardiol., 84, 1198 (1999)
  20. Plank P, Applications of biopolymers in construction engineering. In: Steinbuechel A (ed) Biopolymers, Wiley- VCH, Weinheim, 29 (2003)
  21. Pouchez J, Peschard A, Grosseau P, Guyonnet R, Guihot B, Vallee F, Cem. Concr. Res., 36, 288 (2006)
  22. Sarkar N, J. Appl. Polym. Sci., 24, 1977 (1979)
  23. Silva SMC, Pinto FV, Antunes FE, Miguel MG, Sousa JJS, Pais AACC, J. Colloid Interface Sci., 327(2), 333 (2008)
  24. Uslu I, Aytimur A, J. Appl. Polym. Sci., 124(4), 3520 (2012)
  25. Wang QQ, Li L, Carbohyd. Polym., 62, 232 (2005)
  26. Williams RO, Reynolds TD, Cabelka TD, Sykora MA, Mahaguna V, Pharm. Dev. Technol., 7, 181 (2002)
  27. Yoon DS, Cho YK, Oh KW, Kim S, Kim YA, Han JI, Lim G, Microsyst. Technol., 12, 238 (2006)