Korean Journal of Chemical Engineering, Vol.30, No.5, 1097-1104, May, 2013
Simulation of computational fluid dynamics and comparison of cephalosporin C fermentation performance with different impeller combinations
E-mail:
Cephalosporin C (CPC) fermentation by Acremonium chrysogenum is an extremely high oxygen-consuming process and oxygen transfer rate in a bioreactor directly affects fermentation performance. In this study, fluid dynamics and oxygen transfer in a 7 L bioreactor with different impellers combinations were simulated by computational fluid dynamics (CFD) model. Based on the simulation results, two impeller combinations with higher oxygen transfer rate (KLa) were selected to conduct CPC fermentations, aiming at achieving high CPC concentration and low
accumulation of major by-product, deacetoxycephalosporin (DAOC). It was found that an impeller combination with a higher KLa and moderate shear force is the prerequisite for efficient CPC production in a stirred bioreactor. The best impeller combination, which installed a six-bladed turbine and a four-pitched-blade turbine at bottom and upper layers but with a shortened impellers inter-distance, produced the highest CPC concentration of 35.77 g/L and lowest DAOC/
CPC ratio of 0.5%.
- Kozma J, Karaffa L, J. Biotechnol., 48, 59 (1996)
- Hilgendorf P, Diekmann H, Heiser V, Thoma M, Appl. Microbiol. Biotechnol., 27, 247 (1987)
- Rollins MJ, Jensen SE, Wolfe S, Westlake DW, Enzyme Microb. Technol., 12, 40 (1990)
- Zhou W, Holzhauer-Rieger K, Dors M, Schugerl K, Enzyme Microbiol. Technol., 14, 848 (1992)
- Yang A, Dong HL, Liu G, J. Ind. Microbiol. Biotechnol., 39, 269 (2012)
- Mishra P, Srivastava P, Kundu S, World J. Microbiol. Biotechnol., 21, 525 (2005)
- Basch J, Chiang SJ, J. Ind. Microbiol. Biotechnol., 20, 344 (1998)
- DeMondena JA, Gutierrez S, Velasco J, Fernandez FJ, Fachini RA, Galazzo JL, Hughes DE, Martin JF, Biotechnol., 11, 926 (1993)
- Nienow AW, Appl. Mech. Rev., 51, 3 (1998)
- Papagianni M, Biotechnol. Adv., 22, 189 (2004)
- Metz B, deBruijn EW, van Suijdam JC, Biotechnol. Bioeng., 23, 149 (1981)
- Nielsen J, Johansen CL, Jacobsen M, Krabben P, Villadsen J, Biotechnol. Prog., 11(1), 93 (1995)
- Smith JJ, Lilly MD, Fox RI, Biotechnol. Bioeng., 35, 11 (1990)
- Rahimi M, Kakekhani A, Alsairafi AA, Korean J. Chem. Eng., 27(4), 1150 (2010)
- Dhanasekharan KM, Sanyal J, Jain A, Haidari A, Chem. Eng. Sci., 60(1), 213 (2005)
- Raimondi MT, Moretti M, Cioffi M, Giordano C, Boschetti F, Lagana K, Pietrabissa R, Biorheology., 43, 215 (2006)
- Santos-Moreau V, Brunet-Errard L, Rolland M, Chem. Eng.Sci., 207, 596 (2012)
- Williams KA, Saini S, Wick TM, Biotechnol. Prog., 18(5), 951 (2002)
- Marten MR, Wenger KS, Khan SA, Rheology mixing time, and regime analysis for a production-scale Aspergillus oryzae fermentation,in, A.W. Nienow (Ed.), Bioreactor and Bioprocess Fluid Dynamics, BHR Group, Edinburgh (1997)
- Um BH, Hanley TR, Korean J. Chem. Eng., 25(5), 1094 (2008)
- Ranade VV, Bourne JR, Joshi JB, Chem. Eng. Sci., 46, 1883 (1991)
- Xia JY, Wang SJ, Zhang SL, Zhong JJ, Biochem. Eng.J., 38, 406 (2007)
- Garcia-Ochoa F, Gomez E, Chem. Eng. Sci., 59(12), 2489 (2004)
- Xia JY, Wang SJ, Liang SL, Zhong JJ, Biochem. Eng. J., 38, 406 (2008)
- Kumaresan T, Joshi JB, Chem. Eng. J., 115(3), 173 (2006)
- Abrardi V, Rovero G, Baldi G, Sicardi S, Conti R, Chem. Eng.Res. Des., 68, 516 (1990)
- Ahmed SU, Ranganathan P, Pandey A, Sivaraman S, J. Biosci.Bioeng., 6, 588 (2010)
- Tollnick C, Seidel G, Beyer M, Schguerl K, Adv. Biochem.Eng. Biotechnol., 86, 1 (2004)
- Chiang SJ, J. Ind. Microbiol. Biotechnol., 31, 99 (2004)
- Elander RP, Appl. Microbiol. Biotechnol., 61(5-6), 385 (2003)
- Kim JH, Lim JS, Kim CH, Kim SW, Lett. Appl. Microbiol., 40, 307 (2005)
- Matsumura M, Imanaka T, Yoshida T, Taguchi H, J. Ferment.Technol., 58, 197 (1980)
- Basak S, Velayudhan A, Ladisch MR, Biotechnol. Prog., 11(6), 626 (1995)