화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.24, No.2, 121-125, April, 2013
탄소 단섬유를 이용한 탄소종이 제조 및 전기전도도 특성
Preparation and Electrical Properties of Carbon Paper Using Chopped Carbon Fiber
E-mail:
초록
본 연구에서는 고분자 전해질 연료전지용 가스확산층의 지지체로 쓰이는 탄소종이를 탄소 단섬유를 이용하여 습식법으로 제조하였다. 습식법을 통한 탄소종이 제조는 크게 탄소 단섬유의 분산, 탄소종이 웹 제조, 페놀함침의 세 가지 과정을 거치게 된다. 이번 연구에서는 몇 가지 분산제의 종류에 따른 탄소 단섬유의 분산도를 확인하고, 최적의 분산제를 찾아 탄소종이 제조 시 탄소섬유가 이차원적 배향이 잘 이루어지게 하였다. 추가적으로 페놀함침 시 첨가되는 페놀과 카본블랙 함량에 따른 전기전도도 특성을 분석하였다. 그 결과 sodium dodecyl sulfate를 분산제로 사용한 경우 탄소섬유의 분산이 가장 잘 되는 것을 확인하였으며, 페놀 및 카본블랙 함량에 따른 전도도 특성은 탄소섬유 대비 페놀이 8 wt%, 카본블랙이 5 wt% 첨가된 경우 가장 우수하였다.
In this work, we prepared the carbon paper from chopped carbon fibers using a gas diffusion matrix in polymer electrolyte membrane fuel cells by wet processing. The process of making carbon paper using wet processing is consisted of the three steps involving the dispersion of chopped carbon fibers, the preparation of the carbon fiber web, the impregnating of phenol resin. This work was focused on finding the optimal surfactant to make the carbon paper with 2D orientation of carbon fibers by investigating the dispersion state of carbon fibers in different dispersion solutions. Furthermore, the effect of phenol resin and carbon black contents on properties of electric conductivity was analyzed. As a result, it is confirmed that the carbon fiber was well dispersed when using sodium dodecyl sulfate as a surfactant, and the carbon paper with 8 wt% of phenol and 5 wt% of carbon black contents showed the most excellent electrical property.
  1. Eg&G Technical Services, Inc., Fuel Cell Handbook, U.S. Department of Energy, West Virginia (2004)
  2. Shim JP, Han CS, Sun JJ, Park GS, Lee JJ, Lee HK, Trans. Kor. Hydrogen New Energy Soc., 23, 34 (2012)
  3. Reed MW, Brodd RJ, Carbon., 3, 241 (1965)
  4. Song CS, Catal. Today, 77(1-2), 17 (2002)
  5. Litster S, McLean G, J. Power Sources, 130(1-2), 61 (2004)
  6. Park S, Lee JW, Popov BN, J. Power Sources, 163(1), 357 (2006)
  7. Feser JP, Prasad AK, Advani SG, J. Power Sources, 162(2), 1226 (2006)
  8. Park GG, Sohn YJ, Yang TH, Yoon YG, Lee WY, Kim CS, J. Power Sources, 131(1-2), 182 (2004)
  9. Ge JB, Higier A, Liu HT, J. Power Sources, 159(2), 922 (2006)
  10. Escribano S, Blachot JF, Etheve M, Morin A, Mosdale R, J. Power Sources, 156(1), 8 (2006)
  11. Ahn EJ, Park GG, Yoon YG, Park JS, Lee WY, Kim CS, J. Kor. Electrochem. Soc., 10, 306 (2007)
  12. Haile SM, Mater. Today., 5, 25 (2003)
  13. Gamburzev S, Appleby AJ, J. Power Sources, 107(1), 5 (2002)
  14. Antolini E, Passos RR, Ticianelli EA, J. Power Sources, 109(2), 477 (2002)
  15. Mathur RB, Maheshwari PH, Dhami TL, Sharma RK, Sharma CP, J. Power Sources, 161(2), 790 (2006)
  16. Park SK, Lee JW, Popov BN, Int. J. Hydrog. Energy., 37, 5850 (2012)
  17. Jang J, Lee CH, Park KH, Ryu SK, Korean Chem. Eng. Res., 44(6), 602 (2006)
  18. Jin X, Streett DA, Dunlap CA, Lyn ME, Biol. Control., 46, 226 (2008)
  19. Samanta S, Ghosh P, Chem. Eng. Res. Des., 89(11A), 2344 (2011)
  20. Owoyomi O, Jide I, Akanni MS, Soriyan OO, Morakinyo MK, J. Appl. Sci., 5, 729 (2005)
  21. Claro C, Munoz J, Fuente J, Jimenez-Castellanos MR, Lucero MJ, Int. J. Pharm., 347, 45 (2008)
  22. Housaindokht MR, Pour AN, Solid State Sci., 14, 622 (2012)
  23. Xie ZY, Jin GY, Zhang M, Su ZA, Zhang MY, Chen JX, Huang QZ, Trans. Nonferrous Met. Soc. China., 20, 1412 (2010)
  24. Ra EJ, An KH, Kim KK, Jeong SY, Lee YH, Chem. Phys. Lett., 413(1-3), 188 (2005)
  25. Liu CH, Ko TH, Liao YK, J. Power Sources, 178(1), 80 (2008)