화학공학소재연구정보센터
Polymer(Korea), Vol.37, No.2, 162-166, March, 2013
그래핀 산화물-구형 고분자 입자 사이의 흡착 거동
Adhesion Behavior of Graphene Oxide on Spherical Polymer Particles
E-mail:
초록
고분자 입자에 그래핀이 코팅된 복합체를 제조하고 구조 및 형태변화를 통한 그래핀의 새로운 응용 가능성이 제기되고 있다. 그래핀이 표면에 흡착된 폴리스티렌 복합입자의 물성제어를 위해서, 물 분산매 하에 혼합방법과 혼합순서를 달리하여 흡착반응 시간과 혼합물 내의 순간적인 상대농도 차이를 조사하였다. 유화중합으로 중합된 폴리스티렌 입자에 폴리에틸렌이민을 흡착시켜 표면에 양전하를 갖게 만든 고분자 입자와, 흑연의 화학적 박리법으로 표면에 음전하를 갖도록 제조된 그래핀 산화물과의 서로 반대되는 전하를 갖는 두 입자의 흡착을 유도한 결과 흡착 반응 시간이 길수록, 순간 상대 농도차가 클수록 균질하게 표면 코팅이 만들어지고, 응집이 적은 복합 입자를 제조 할 수 있었다.
Graphene-coated polymer particles have attracted research interests due to their emerging applications derived from their controlled structure and morphology. To control the properties of graphene oxide (GO)-polystyrene (PS) composite particles, the adsorption time and instantaneous adsorption conditions were investigated by varying their mixing method. Polystyrene particles prepared by emulsion polymerization were modified to have positive surface charge by adsorption of polyethylene imine (PEI) on the surface of PS particles. GO prepared by the chemical exfoliation method had negative surface charge from the oxygenated groups. The adsorption of the negatively charged GOs onto the positively charged PS particles was successfully completed, and it was found that a longer adsorption time and a greater difference in the instantaneous relative concentration led PS-GO particles to have more homogeneously coated surfaces without aggregation.
  1. Oldenburg SJ, Averitt RD, Westcott SL, Halas NJ, Chem. Phys. Lett., 288, 243 (1998)
  2. Zheng HP, Lee I, Rubner MF, Hammond PT, Adv. Mater., 14(8), 569 (2002)
  3. Aizenberg J, Braun PV, Wiltzius P, Phys. Rev. Lett., 84, 2997 (2000)
  4. Zheng HP, Rubner MF, Hammond PT, Langmuir, 18(11), 4505 (2002)
  5. Liu J, Circuit World., 19, 4 (1993)
  6. Reynhout XEE, Hoekstra L, Meuldijk J, Drinkenburg AAH, J. Polym. Sci. A: Polym. Chem., 41(19), 2985 (2003)
  7. Wang PH, Pan CY, Colloid Polym. Sci., 280, 152 (2002)
  8. Li Y, Moon K, Wong CP, Science., 308, 1419 (2005)
  9. Li Y, Wong CP, Mater. Sci. Eng. R: Reports., 51, 1 (2006)
  10. Caruso F, Adv. Mater., 13(1), 11 (2001)
  11. Kaltenpoth G, Himmelhaus M, Slansky L, Caruso F, Grunze M, Adv. Mater., 15(13), 1113 (2003)
  12. Brown KR, Natan MJ, Langmuir, 14(4), 726 (1998)
  13. Vickery JL, Patil AJ, Mann S, Adv. Mater., 21(21), 2180 (2009)
  14. Ju SA, Kim K, Kim JH, Lee SS, ACS Appl. Mater.Interf., 3, 2904 (2011)
  15. Dionigi C, Stoliar P, Ruani G, Quiroga SD, Facchini M, Biscarini F, J. Mater. Chem., 17, 3681 (2007)
  16. Thunemann AF, Schutt D, Kaufner L, Pison U, Mohwald H, Langmuir, 22(5), 2351 (2006)
  17. Dreyer DR, Park S, Bielawski CW, Ruoff RS, Chem.Soc. Rev., 39, 228 (2010)
  18. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen SBT, Ruoff RS, Carbon., 45, 1558 (2007)
  19. Mkhoyan KA, Contryman AW, Silcox J, Stewart DA, Eda G, Mattevi C, Miller S, Chhowalla M, Nano Lett., 9, 1058 (2009)
  20. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen SBT, Ruoff RS, Nature., 442, 282 (2006)
  21. Choi H, Lee H, Lee MK, Lee J, J. Pharm. Sci., 101, 2941 (2012)
  22. Lee MK, Bang J, Shin K, Lee J, Crystal Growth & Design., 10, 5187 (2010)
  23. Jeon S, Noh H, Polym.(Korea), 36(3), 338 (2012)