화학공학소재연구정보센터
Macromolecular Research, Vol.21, No.2, 221-227, February, 2013
Synthesis and thermal properties of ferrocene-modified poly(epichlorohydrin-co-2-(methoxymethyl)oxirane)
E-mail:
2-(Methoxymethyl)oxirane (MOMO) was used as a co-monomer for ring-opening polymerization, and four different samples of poly(epichlorohydrin-co-2-(methoxymethyl)oxirane) (poly(ECH-co-MOMO)) were synthesized by cationic ring opening copolymerization in the presence of BF3-etherate and 1,4-butandiol as an initiator system. Further, ferrocene modified copolymers were obtained by a substitution reaction of ferrocene methanol with the epichlorohydrin (ECH) unit in poly (ECH-co-MOMO) under mild conditions. Structural analysis of all products was performed using Fourier transform infrared (FTIR) spectroscopy and nuclear magnetic resonance (NMR). The thermal behaviors of the poly(ECH-co-MOMO) and ferrocene-modified poly(ECH-co-MOMO) were compared using differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). The glass transition temperatures (T g ) of PECH and PMOMO were -47 and -61 °C, respectively. As the contents of PMOMO increased, the T g of the poly(ECH-co-MOMO)s were decreased and the onset of thermal decomposition shifted to a higher temperature. The decomposition temperature of poly(ECH-co-MOMO) was higher than that of the ferrocene-modified poly(ECH-co-MOMO).
  1. Millan JL, Martinez G, Mijangos C, Gomez-Elvira JM, Makromol. Chem. Makromol. Symp., 29, 185 (1989)
  2. Sherrington DC, Hodge P, Synthesis and Separations Using Functional Polymers, Wiley, Chichester (1988)
  3. Iizawa T, Nishikubo T, Ichikawa M, Sugawara Y, J.Polym. Sci. Part A: Polym. Chem., 23, 1893 (1985)
  4. Perez M, Ronda JC, Reina JA, Serra A, Polymer, 42(1), 1 (2001)
  5. Nishikubo T, Iizawqa T, Mizutami Y, Okawara M, Makromol. Chem. Rapid Commun., 3, 617 (1982)
  6. Nishikubo T, Iizawqa T, Sukawara Y, Shimokawa TJ, J. Polym. Sci. Part A: Polym. Chem., 24, 1097 (1986)
  7. Lee JC, Litt MH, Rogers CE, J. Polym. Sci. B: Polym. Phys., 36(1), 75 (1998)
  8. Sohn EH, Kim JE, Kim BG, Kang JI, Chung JS, Ahn JY, Yoon JY, Lee JC, Colloid. Surf. B: Biointerfaces., 77, 191 (2010)
  9. Kang H, Sohn EH, Kang DS, Lee JC, Liq. Cryst., 36, 855 (2009)
  10. Callau L, Reina JA, Mantecon A, Tessier M, Spassky N, Macromolecules, 32(23), 7790 (1999)
  11. Kim BG, Chung JS, Sohn EH, Kwak SY, Lee JC, Macromolecules, 42(9), 3333 (2009)
  12. Perez M, Ronda JC, Reina JA, Serra A, Polymer, 39(17), 3885 (1998)
  13. Casado CM, Gonzalez B, Cusdrado I, Alonso B, Moran M, Losada J, Angew. Chem. Int. Ed., 39, 2135 (2000)
  14. Alonso B, Armada PG, Losada J, Cuadrado I, Gonzalez B, Casado CM, Biosens. Bioelectron., 19, 1617 (2004)
  15. Oh SK, Baker LA, Crooks RM, Langmuir, 18(18), 6981 (2002)
  16. Nlate S, Ruiz J, Sartor V, Navarro R, Blais JC, Astruc D, Chem. Eur. J., 6, 2544 (2000)
  17. Kim C, Park E, Song CK, Koo BW, Synth. Met., 123, 493 (2001)
  18. Gibbs JM, Park SJ, Anderson DR, Watson KJ, Mirkin CA, Nguyen ST, J. Am. Chem. Soc., 127(4), 1170 (2005)
  19. Carvalheira P, Gadiot GMHJL, de Klerk WPC, Thermochim. Acta., 269/270, 273 (1995)
  20. Urbanski T, Chemistry and Technology of Explosives Vol III; Pergamon Press, NewYork (1985)
  21. Swarts PJ, Mathilda I, Lamprecht GJ, Greyling SE, Swarts JC, S-Afr Tydskr Chem., 50, 208 (1994)
  22. Subramanian K, J. Polym. Sci. A: Polym. Chem., 37(22), 4090 (1999)
  23. Cho BS, Noh ST, J. Appl. Polym. Sci., 121(6), 3560 (2011)
  24. Ulrich T, Mueller W, Yang Z, Georg I, J. Organomet.Chem., 463, 163 (1993)
  25. Senel M, Synth. Met., 161, 1861 (2011)
  26. Nakatsuji Y, Nakamura T, Okahara M, Dishong DM, Gokel GW, J. Org. Chem., 48, 1237 (1983)