화학공학소재연구정보센터
Macromolecular Research, Vol.21, No.1, 65-70, January, 2013
Enhanced performance of organic photovoltaic devices by photo-crosslinkable buffer layer
E-mail:,
The performance of organic photovoltaic devices was enhanced by insertion of the photo-crosslinkable buffer layer. This buffer layer was formed by a photo curable precursor with bithiophene and pentadienyl moieties. The fill factor of the device with this buffer layer exceeded 0.7 in the organic photovoltaic cell. The characteristic of the photo-crosslinkable property enabled this buffer layer to be inserted between the hole extraction layer and the active layer, which formed an ohmic contact with both layers. The insertion of the buffer layer induced a 20% enhancement in conversion efficiency by small increases in the short-circuit current and the open-circuit voltage, and a huge increase in the fill factor. This photo-crosslinkable buffer layer acted as a leakage current reducing layer as measured by the reduced dark current. The high crystallinity and smooth surface of this buffer layer resulted in improved surface morphology and internal packing, thus enhanced the fill factor.
  1. WOHRLE D, MEISSNER D, Adv. Mater., 3(3), 129 (1991)
  2. Brabec CJ, Sariciftci NS, Hummelen JC, Adv. Funct. Mater., 11(1), 15 (2001)
  3. Ameri T, Dennler G, Lungenschmied C, Brabec CJ, Energy Environ. Sci., 2, 347 (2009)
  4. Scharber MC, Wuhlbacher D, Koppe M, Denk P, Waldauf C, Heeger AJ, Brabec CL, Adv. Mater., 18(6), 789 (2006)
  5. Dennler G, Scharber MC, Brabec CJ, Adv. Mater., 21(13), 1323 (2009)
  6. Lee K, Park SH, Roy A, Beaupre S, Cho S, Coates N, Moon JS, Moses D, Leclerc M, Heeger AJ, Nat. Photonics., 3, 297 (2009)
  7. Blankenburg L, Schultheis K, Schache H, Sensfuss S, Schrodner M, Sol. Energy Mater. Sol. Cells, 93(4), 476 (2009)
  8. Krebs FC, Manceau M, Angmo D, Jorgensen M, Org. Electron., 12, 566 (2011)
  9. Kwon JH, Yeo HD, Cha HJ, Lee MJ, Park HT, Park JH, Park CE, Kim YH, Macromol. Res., 19(2), 197 (2011)
  10. Gupta D, Bag M, Narayan KS, Appl. Phys. Lett., 92, 093301 (2008)
  11. Glatthaar M, Riede M, Keegan N, Sylvester-Hvid K, Zimmermann B, Niggemann M, Hinsch A, Gombert A, Sol. Energy Mater. Sol. Cells, 91(5), 390 (2007)
  12. Li G, Shrotriya V, Huang JS, Yao Y, Moriarty T, Emery K, Yang Y, Nat. Mater., 4(11), 864 (2005)
  13. Ma WL, Yang CY, Gong X, Lee K, Heeger AJ, Adv. Funct. Mater., 15(10), 1617 (2005)
  14. Chang RPH, Irwin MD, Buchholz B, Hains AW, Marks TJ, Proc. Natl. Acad. Sci. U.S.A., 105, 2783 (2008)
  15. Shin M, Kim H, Kim Y, Macromol. Res., 18(7), 709 (2010)
  16. Kim GH, Song HK, Kim JY, Sol. Energy Mater. Sol. Cells, 95(4), 1119 (2011)
  17. Hoang MH, Cho MJ, Kim DC, Kim KH, Shin JW, Cho MY, Joo JS, Choi DH, Org. Electron., 10, 607 (2009)
  18. Gupta D, Bag M, Narayan KS, Appl. Phys. Lett., 92 (2008)
  19. Shaheen SE, Brabec CJ, Sariciftci NS, Padinger F, Fromherz T, Hummelen JC, Appl. Phys. Lett., 78, 841 (2001)
  20. Kang NS, Ju BK, Lee TW, Choi DH, Hong JM, Yu JW, Sol. Energy Mater. Sol. Cells, 95(10), 2831 (2011)
  21. Kim KJ, Kim YS, Kang WS, Kang BH, Yeom SH, Kim DE, Kim JH, Kang SW, Sol. Energy Mater. Sol. Cells, 94(7), 1303 (2010)
  22. Vandewal K, Tvingstedt K, Gadisa A, Inganas O, Manca JV, Nat. Mater., 8(11), 904 (2009)
  23. Tong,XR Lassiter BE, Forrest SR, Org. Electron., 11, 705 (2010)
  24. Kim JY, Kim SH, Lee HH, Lee K, Ma WL, Gong X, Heeger AJ, Adv. Mater., 18(5), 572 (2006)