화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.135, No.1, 400-408, 2013
Mesomorphic [2]Rotaxanes: Sheltering Ionic Cores with Interlocking Components
Two types of liquid crystalline [2]rotaxanes based on a conventional tetracatenar motif (a rod-shaped molecule with two side chains at each end) have been prepared. Dicationic compounds with ester stoppers and tetracationic materials with pyridinium stoppers are compared to each other and their dumbbell shaped analogs. Since the ionic core contributes about 70% to the overall length and molecular weight of the molecules, sheltering the ionic cores with an interlocked neutral macrocycle has considerable effect on the mesomorphism and thermal stability of the materials. The influence of the sheltering macrocycle, the numbers of charges on the core and the size and nature of the side chains (aliphatic vs siloxane) were probed. [2]Rotaxanes with linear side chains and minimum ratios of chain-to-core volumes of about 0.35 and 0.30 for tetra- and dicationic compounds, respectively, display smectic liquid crystal phases. Larger ratios increase the temperature range of the smectic A phases beyond the decomposition temperatures; a disadvantage for processing because no stable isotropic liquid phase is available. The change from tetra- to dicationic [2]rotaxanes increased not only the fluidity of their smectic A phases but also their thermal and chemical stability. Branched side chains (2-hexyldecyl) disfavor the formation of lamellar mesophases and, instead, induce higher ordered soft crystal phases. No liquid crystal phases but soft crystal phases are observed for the analogous di- and tetracationic compounds without an ion sheltering interlocked macrocycle (dumbbells).