화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.2, No.3, 253-261, September, 1991
폴리이미드의 합성과 필름의 물성에 미치는 디아민과 용매의 효과
The Effect of Diamine and Solvent on The Synthesis of Polyimides and Their Film Properties
초록
폴리이미드의 전구체인 폴리아믹산을 benzophenone tetracarboxylic dianhydride (BTDA) 와 4,4'-diamino diphenyl methane (MDA) 혹은 MDA 와 3,3'-dimethyl benzidine (OTB) 의 혼합디아민과 용액축중합반응에 의하여 합성하였다. 반응용매로는 m-cresol 과 m-cresol/xylene의 혼합용매를 사용하였다. TGA 분석 결과 폴리이미드 필름은 초기분해 온도가 540 ℃- 590 ℃의 범위로서 내열성이 우수하였다. DSC 분석으로 중합체의 유리전이온도는 340 ℃ 이상임을 확인하였다. 폴리이미드 필름은 양호한 기계적, 전기적 물성값을 갖는 시료에서 인장강도가 16 Kg/mm(2) 이상이었고, 절연파괴전압이 200 KV/mm 정도였다. 대체로 MDA 만을 디아민으로 사용한 단일중합체보다 MDA/OTB 공중합체의 물성이 우수하였고, m-cresol에서 합성한 중합체보다 m-cresol/xylene 혼합용매계에서 합성한 중합체의 물성값이 우수하였다.
Polyamic acids, precursor polymers of polyimides have been obtained by the solution polycondensation of benzophenone tetracarboxylic dianhydride (BTDA) with 4, 4'-diamino diphenyl methane (MDA) and/or 3, 3'-dimethyl benzidine (OTB). The reaction was carried in two solvent systems such as m-cresol and m-cresol/xylene mixture. The results of TGA analysis showed that the polyimide films had good thermal stability with the initial decomposition temperature ranging from 540 ℃ to 590 ℃. According to DSC analysis of polymers, the glass transition temperature was over 340 ℃. Polyimide film samples, showed good mechanical and electrical properties, had over 16 Kg/mm2 of tensile strength and about 200 KV/mm of dielectric breakdown voltage. The properties of the copolymer from MAD/OTB were better than those of the homopolymer from MDA. And the polymer synthesized in m-cresol had lower properties than that obtained in m-cresol/xylene.
  1. "Dirass Report. 10-1," Dia Research Institute (1987)
  2. Kinjo N, Numata S, Yokoyama T, Plastics, 34, 81 (1983)
  3. Bessonov MI, Koton MM, Kudryavtsev VV, Laius LA, "Polyimides," Consultants Bureau, 286 (1987)
  4. U.S. Patent, 3,179,614 (1965)
  5. U.S. Patent, 3,179,634 (1965)
  6. Sroog CE, Am. Chem. Soc. Div. Polym. Chem. Prepr., 5(1), 132 (1964)
  7. Sroog CE, J. Polym. Sci. C: Polym. Lett., 16, 1191 (1967)
  8. Wallach ML, Am. Chem. Soc. Div. Polym. Chem. Prepr., 6(1), 53 (1965)
  9. Sheffer H, J. Appl. Polym. Sci., 26, 3837 (1981) 
  10. Japan Patent, 59-33,325 (1984)
  11. Japan Patent, 60-108,464 (1985)
  12. Japan Patent, 60-217,261 (1985)