Journal of Applied Polymer Science, Vol.127, No.4, 2389-2396, 2013
Effect of Silk Fiber to the Mechanical and Thermal Properties of Its Biodegradable Composites
In recent years, natural fiber-reinforced biodegradable thermoplastics are being recognized as an emerging new environmentally friendly material for industrial, commercial, and biomedical applications. Among different types of natural fibers, silk fiber is a common type of animal-based fiber, has been used for biomedical engineering and surgical operation applications for many years because of its biocompatible and bioresorbable properties. On the basis of our previous study, a novel biodegradable biocomposite for biomedical applications was developed by mixing chopped silk fiber and polylactic acid (PLA) through the injection molding process. This article is aimed at studying the dynamic mechanical and thermal properties of the composite in relation to its biodegradation effect. At the beginning, it was found that the initial storage modulus of a silk fiber/PLA composite increased while its glass transition temperature decreased as compared with a pristine PLA sample. Besides, the coefficient of linear thermal expansions (CLTE) of the composite was reduced by 28%. This phenomenon was attributed to the fiber-matrix interaction that restricted the mobility of polymer chains adhered to the fiber surface, and consequently reduced the T-g and CLTE. It was found that the degraded composite exhibited lower initial storage modulus, loss modulus and tan delta (tan delta) but the T-g was higher than the silk fiber/PLA composite. This result was mainly due to the increase of crystallinity of the composite during its degradation process. (C) 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 127:2389-2396, 2013