화학공학소재연구정보센터
Inorganic Chemistry, Vol.52, No.1, 245-257, 2013
DFT Study of Oxo-Functionalized Pentavalent Dioxouranium Complexes: Structure, Bonding, Ligand Exchange, Dimerization, and U(V)/U(IV) Reduction of OUOH and OUOSiH3 Complexes
The structural and electronic properties of model oxo-functionalized pentavalent dioxouranium complexes have been studied using scalar relativistic density functional theory (DFT) calculations. The electronic structures of these complexes are compared to those of their hexavalent and pentavalent counterparts with free axial oxo groups while paying particular emphasis on the effect of oxo-functionalization on the formation of binuclear complexes, the U(V)/U(IV) redox potentials, as well as ligand exchange between the axial and equatorial regions of the dioxouranium moiety. The stabilization of the sigma(d) orbitals of the UO2 moiety is one of the major effects of oxo-functionalization. The origin of this effect is the mixing of the sigma(d) orbital of the uranyl group with the sigma(OH)/sigma(OSiH3) orbitals of the axial OH/OSiH3 group. The 6p atomic orbitals of the uranium center are mixed to a greater extent with the sigma(d) orbital after stabilization caused by oxo-functionalization. The asymmetric nature of the oxo-functionalization has dramatic effects not only on the U-O bond lengths (elongation by up to 0.24 angstrom) and U-O bond orders (loss of a full bond order) but also on the formation and type of U2O4 core found in binuclear complexes. The loss of a full bond order upon oxo-functionalization means the axial U-OH/U-OSiH3 bonds are only slightly stronger than they would be if they were found in the equatorial region of the uranyl moiety. This raises the possibility of ligand exchange between the axial and equatorial regions as well as increasing the stability of the binuclear complexes with butterfly-shaped U2O4 cores relative to those with diamond U2O4 cores. Reductive oxo-functionalization results in complexes with lower electron density at their U(V) centers in comparison to UO2+ complexes. This has dramatic effects on the calculated U(V)/U(IV) redox potentials.