Inorganic Chemistry, Vol.51, No.24, 13214-13228, 2012
Polyoxopalladates Encapsulating 8-Coordinated Metal Ions, [(MO8Pd12L8)-L-II](n-) (M = Sc3+, Mn2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+, Lu3+; L = PhAsO32-, PhPO32-, SeO32-)
A total of 16 discrete polyoxopalladates(II) [(MO8Pd12L8)-L-II](n-), with a metal ion M encapsulated in a cuboid-shaped {Pd12O8L8} cage, have been synthesized: the phenyl-arsonate-capped series (1) L = PhAsO32-, M = Sc3+ (ScPhAs), Mn2+ (MnPhAs), Fe3+ (FePhAs), Co2+ (CoPhAs), Ni2+ (NiPhAs), Cu2+ (CuPhAs), Zn2+ (ZnPhAs); the phenyl-phosphonate-capped series: (2) L = PhPO32-, M = Cu2+ (CuPhP), Zn2+ (ZnPhP); and the selenite-capped series (3) L = SeO32-, M = Mn2+ (MnSe), Fe3+ (FeSe), Co2+ (CoSe), Ni2+ (NiSe), Cu2+, (CuSe), Zn2+ (ZnSe), Lu3+ (LuSe)). The polyanions were prepared in one-pot reactions in aqueous solution of [Pd-3(CH3COO)(6)] with an appropriate salt of the metal ion M, as well as PhAsO3H2, PhPO3H2, and SeO2, respectively, and then isolated as hydrated sodium salts Na-n[(MO8Pd12L8)-L-II]center dot yH(2)O (y = 10-37). The compounds were characterized in the solid state by IR spectroscopy, single-crystal XRD, elemental and therrnogravimetric analyses. The solution stability of the diamagnetic polyanions ScPhAs, ZnPhAs, ZnPhP, ZnSe, and LuSe was confirmed by multinuclear (Se-77, P-31, C-13, and H-1) NMR spectroscopy. The polyoxopalladates ScPhAs, MnPhAs, CoPhAs, and CuPhAs were investigated by electrospray ionization mass spectrometry (ESI-MS) and tandem mass spectrometry (MS/MS). Electrochemical studies on the manganese- and iron-containing derivatives demonstrated that the redox properties of the Mn2+, Fe3+, and Pd2+ centers in the polyanions are strikingly influenced by the nature of the capping group. These results have subsequently been verified by density functional theory (DFT) calculations. Interestingly, electron paramagnetic resonance (EPR) measurements suggest that the coordination geometry around Mn2+ is dynamically distorted on the EPR time scale (similar to 10(-11) s), whereas it appears as a static ensemble with cubic symmetry on the X-ray diffraction (XRD) time-scale (10(-15) s). The octacoordinated Cu2+ cuboid is similarly distorted, in good agreement with DFT calculations. Interestingly, g(parallel to) is smaller than g(perpendicular to), which is quite unusual, needing further theoretical development.