Journal of Catalysis, Vol.154, No.2, 288-298, 1995
Influence of the Support of Como Sulfide Catalysts and of the Addition of Potassium and Platinum on the Catalytic Performances for the Hydrodeoxygenation of Carbonyl, Carboxyl, and Guaiacol-Type Molecules
The present work corresponds to part of a program aimed at upgrading oil obtained by pyrolysis of biomass by hydrotreatment (hydrodeoxygenation HDO). CoMo sulfide catalysts, nonsupported, supported on different supports (alumina, carbon, silica), or modified by K or Pt, were used. We used a model reacting mixture containing compounds representative of the molecules that must react to permit a primary stabilisation of the pyrolytic oil : 4-methylacetophenone (4-MA), diethylsebacate (DES), and guaiacol (GUA). In the reaction of the carbonyl group of the 4-MA it is shown that no important role is played by any acid-base mechanism; dispersion determines the activity. Acidity of the support influences the formation of active sites for decarboxylation and hydrogenation of the carboxyl group of DES. It was confirmed that guaiacol-type molecules lead to coking reactions. The role of acidity in the mechanism of these reactions is confirmed, but the modifications made in the catalysts in this work are still not sufficient to control coke deposition. The catalysts supported on carbon lead to the direct elimination of the methoxyl group of the guaiacol. Carbon, on the whole, seems to be a promising support. This work suggests that appropriate modifications of the hydrotreating catalysts can lead to a more effective process for stabilisation of the bio-oils by reaction with hydrogen.
Keywords:COBALT MOLYBDENUM OXIDE;HYDRODESULFURIZATION CATALYSTS;PHYSICOCHEMICAL CHARACTERIZATION;SILICON DIOXIDE;HDS CATALYSTS;ACIDITY;FUNCTIONALITIES;HYDROGENOLYSIS;SELECTIVITY;DISPERSION