화학공학소재연구정보센터
Heat Transfer Engineering, Vol.34, No.2-3, 140-150, 2013
Electrowetting-on-Dielectric by Wireless Powering
Electrowetting-on-dielectric (EWOD), in which microdroplets are manipulated using electrical inputs, has drawn a great deal of attraction with applications of digital lab-on-a-chip and hot-spot cooling. In most EWOD actuations, the commonly used powering method is wired transmission, which may not be suitable for isolating and employing EWOD devices in hard-to-reach areas. In this study, we investigate wireless power transmission for EWOD utilizing inductive coupling. Since EWOD is typically operated by a high-input voltage although the current is minimal, wireless EWOD also requires a similarly high voltage at the receiver, unlike conventional inductive coupling. To meet this condition, the resonant inductive coupling method at a high resonant frequency is introduced and investigated. To optimize the transmission efficiency, we study the effects of many parameters, such as the frequency, inductance, and capacitance at the transmitter and receiver, the gap between the transmitter coil and receiver coil, and the droplet size, by measuring the voltage at the receiver and the contact angle of the droplet placed on a wirelessly operated EWOD chip. In addition, by applying amplitude modulation to the resonant inductive coupling, wireless AC-EWOD, which generates droplet oscillations and is a common mode for EWOD droplet handling, is also achieved. Finally, it is successfully demonstrated that a droplet is transported laterally by using an array of electrodes, which is also powered by an amplitude-modulated wireless signal.