화학공학소재연구정보센터
Applied Microbiology and Biotechnology, Vol.97, No.4, 1637-1647, 2013
Characterization and immobilization of a novel SGNH hydrolase (Est24) from Sinorhizobium meliloti
A novel oligomeric SGNH hydrolase (Est24) from Sinorhizobium meliloti was identified, actively expressed in Escherichia coli, characterized, and immobilized for industrial application. Sequence analysis of Est24 revealed a putative catalytic triad (Ser(13)-Asp(163)-His(169)), with moderate homology to other SGNH hydrolases. Est24 was more active toward short-chain esters, such as p-nitrophenyl acetate, butyrate, and valerate, while the S13A mutant completely lost its activity. Moreover, the activity of Est24 toward alpha- and beta-naphthyl acetate, and enantioselectivity on (R)- and (S)-methyl-3-hydroxy-2-methylpropionate were tested. Est24 exhibited optimum activity at mesophilic temperature ranges (45-55 A degrees C), and slightly alkaline pH (8.0). Structural and mutagenesis studies revealed critical residues involved in the formation of a catalytic triad and substrate-binding pocket. Cross-linked enzyme aggregates (CLEAs) of Est24 with and without amyloid fibrils were prepared, and amyloid fibril-linked Est24 with amyloid fibrils retained 83 % of its initial activity after 1 h of incubation at 60 A degrees C. The high thermal stability of immobilized Est24 highlights its potential in the pharmaceutical and chemical industries.