Applied Biochemistry and Biotechnology, Vol.169, No.2, 393-407, 2013
Proteome-Based Profiling of Hypercellulase-Producing Strains Developed Through Interspecific Protoplast Fusion Between Aspergillus nidulans and Aspergillus tubingensis
Thirty heterokaryons, formed by protoplast fusion of Aspergillus nidulans and Aspergillus tubingensis, were selected on the basis of their ability to grow on 2-deoxyglucose (0.2 %, w/v) and intermediate spore color. These heterokaryons were studied for cellulase production using shake flask and solid substrate cultures at 40 A degrees C. Fusants 51 and 28 exhibited appreciably higher levels of endoglucanase, cellobiohydrolase, beta-glucosidase, and FPase activities when compared with parental strains. Employing proteomic-based approaches, the differential expression of proteins in secretome of fusants and parental strains were analyzed using two-dimensional electrophoresis. The expression of some of the proteins in the fusants was found to be up/downregulated. The upregulated proteins in the fusant 51 were identified by liquid chromatography-mass spectroscopy as endoxylanase, endochitinase, beta-glucosidase, as well as hypothetical proteins. The cellulases produced by fusants 28 and 51 showed improved saccharification of alkali treated rice straw when compared with the parental strains.
Keywords:Interspecific;Protoplast fusion;Heterokaryons;Cellulase hyper producers;Proteomics;Saccharification