화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.19, No.2, 589-594, March, 2013
A kinetic study on hydrochloric acid leaching of nickel from Ni-Al2O3 spent catalyst
E-mail:
Hydrochloric acid leaching of nickel from spent Ni-Al2O3 catalyst (12.7% Ni, 39.2% Al and 0.68% Fe) has been investigated at a range of conditions by varying particle size (50-180 μm), acid concentration (0.025-2 M), pulp density (0.2-0.4%, w/v) and temperature (293-353 K). Nickel was selectively leached from the catalyst, irrespective of the different conditions. Under the most suitable conditions (1 M HCl, 323 K, stirring at 500 rpm, 50-71 μm particle size), the extent of leaching of Ni and Al after 2 h was 99.9% and 1%, respectively. The XRD pattern of the spent catalyst corresponded to crystalline α-Al2O3 along with elemental Ni. The peak due to elemental Ni was absent in the residue sample produced at the optimum leaching conditions, confirming the complete dissolution of Ni from the spent catalyst. The leaching results were well fitted with the shrinking core model with apparent activation energy of 17 kJ/mol in the temperature range of 293-353 K indicating a diffusion controlled reaction.
  1. Thomas CL, Catalytic Process and Proven Catalysts, Academic Press, New York/London (1970)
  2. Bridger GW, Chinchen GC, Catalyst Handbook, Wolfe Scientific Books, London, 64 (1970)
  3. Goel S, Pant KK, Nigam K, J. Hazard. Mater., 171(1-3), 253 (2009)
  4. Kim HI, Park KH, Mishra D, Hydrometallurgy., 98, 192 (2009)
  5. Marafi M, Stanislaus A, Resource Conservation and Recycling., 52, 859 (2008)
  6. Lee JY, Rao SV, Kumar BN, Kang DJ, Reddy BR, J. Hazard. Mater., 176(1-3), 1122 (2010)
  7. Rapaport D, Hydrocarbon Processing., 79, 49 (2000)
  8. Szymczycha-Madeja A, J. Hazard. Mater., 186(2-3), 2157 (2011)
  9. Bosio V, Viera M, Donati E, J. Hazard. Mater., 154(1-3), 804 (2008)
  10. Busnardo RG, Busnardo NG, Salvato GN, Afonso JC, J. Hazard. Mater., 139(2), 391 (2007)
  11. Idris J, Musa M, Yin CY, Hamid KHK, J. Ind. Eng. Chem., 16(2), 251 (2010)
  12. Chaudhary AJ, Donaldson JD, Boddington SC, Grimes SM, Hydrometallurgy., 34, 137 (1993)
  13. Ognyanova A, Ozturk T, Michelis ID, Ferella F, Taglieri G, Akcil A, Veglio F, Hydrometallurgy., 100, 20 (2009)
  14. Mulak W, Miazga B, Szymczycha A, Int. J. Miner. Process., 77(4), 231 (2005)
  15. Al-Mansi NM, Abdel Monem NM, Waste Management., 22, 85 (2002)
  16. Alex P, Mukherjee TK, Sundaresan M, Hydrometallurgy., 34, 239 (1993)
  17. Furimsky E, Catal. Today, 30(4), 223 (1996)
  18. Roine A, Outokumpu HSC Chemistry Thermochemical Database, Ver. 6.1, Outokumpu Research Oy, Finland (2002)
  19. Abdel-Aal EA, Rashad MM, Hydrometallurgy., 74, 189 (2004)
  20. Georgiou D, Papangelakis VG, Hydrometallurgy., 49, 23 (1998)
  21. Hou X, Xiao L, Gao C, Zhang Q, Zeng L, Hydrometallurgy., 104, 76 (2010)
  22. Habashi F, Gordon and Breach, New York, 1, 153 (1969)
  23. Anand S, Das RP, Transactions of the Indian Institute of Metals., 41, 335 (1988)
  24. Romankiw LT, Bruyn D, Unit Process in Hydrometallurgy, Dallas, TX, 62 (1963)
  25. Raisoni PR, Dixit SG, Minerals Engineering., 1, 225 (1988)
  26. Senanayake G, Senaputra A, Nicol MJ, Hydrometallurgy., 105, 60 (2010)
  27. Senanayake G, Das GK, Hydrometallurgy., 72, 59 (2004)
  28. Senanayake G, Childs J, Akerstrom BD, Pugaev D, Hydrometallurgy., 110, 13 (2011)