Applied Chemistry for Engineering, Vol.24, No.1, 99-103, February, 2013
폴리이온복합체를 이용하여 글루코스 산화효소를 고정화한 바이오전지용 효소전극 제조
Preparation of Enzyme Electrodes for Biofuel Cells Based on the Immobilization of Glucose Oxidase in Polyion Complex
E-mail:
초록
유리화탄소전극 위에 탄소나노튜브(CNT), 전하전달체(CTC), 글루코스 산화효소(GOx), 폴리이온복합체(PIC, poly-Llysine hydrobromiderhk과 poly(sodium 4-styrenesulfonate) 혼합물)를 순차적으로 도포하여 글루코스/산소 바이오전지용 효소전극을 제조하였다. 또한, CNT, bilirubin oxidase (BOD), 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), 그리고 PIC 등의 층으로 제조한 전극을 바이오캐쏘드로 사용하여 바이오전지를 제조하였다. CNT와 CTC가 전극의 성능에 미치는 영향을 조사하였으며, 글루코스농도 5, 20, 200 mM에서 각각 3.6, 10.1, 46.5 μW/cm2의 최대전력밀도를 나타내었으며, 본 연구에서 제시한 전극이 바이오전지 및 바이오센서의 개발에 활용될 수 있다는 것을 보여주었다.
An emzymatic bioanode for a glucose/oxygen biofuel cell was prepared by the sequential coating of carbon nanotube (CNT), charge transfer complex (CTC) based on tetracyanoquinodimethane (TCNQ) and tetrathiafulvalene (TTF), glucose oxidase (GOx), and polyion complex (mixture of poly-L-lysine hydrobromide and poly (sodium 4-styrenesulfonate)) on a glassy carbon electrode. A biocathode was also prepared by the sequential coating of CNT, bilirubin oxidase (BOD), 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), and polyion complex. The effect of CNT and CTC on the electrochemical performance was investigated. The biofuel cell exhibited a promising performance with maximum power densities of 3.6, 10.1, and 46.5 μW/cm2 at 5, 20, and 200 mM of glucose concentration, respectively. The result indicates that the biofuel cell architecture prepared in this study can be used in the development of biofuel cells and biosensors.
Keywords:biofuel cell;glucose oxidase;carbon nanotube;charge transfer complex;polyion complex;power density
- Bullen RA, Arnot TC, Lakeman JB, Walsh FC, Biosens. Bioelectron., 21, 2015 (2006)
- Ivanov I, Vidakovic-Koch T, Sundmacher K, Energies., 3, 803 (2010)
- Davis F, Higson SPJ, Biosens. Bioelectron., 22, 1224 (2007)
- Kamitaka Y, Tsujimura S, Setoyama N, Kajino T, Kano K, Phys. Chem. Chem. Phys., 9, 1793 (2007)
- Stoica L, Dimcheva N, Ackermann Y, Karnicka K, Guschin DA, Kulesza PJ, Rogalski J, Haltrich D, Ludwig R, Gorton L, Schuhmann W, Fuel Cells., 9, 53 (2009)
- Akers NL, Moore CM, Minteer SD, Electrochim. Acta, 50(12), 2521 (2005)
- Arechederra RL, Minteer SD, Fuel Cells., 9, 63 (2009)
- Barton SC, Gallaway J, Atanassov P, Chem. Rev., 104(10), 4867 (2004)
- Togo M, Takamura A, Asai T, Kaji H, Nishizawa M, J. Power Sources, 178(1), 53 (2008)
- Kannan AM, Renugopalakrishnan V, Filipek S, Li P, Audette GF, Munukutla L, J. Nanosci. Nanotechnol., 9, 1665 (2009)
- Barton SC, Gallaway J, Atanassov P, Chem. Rev., 104(10), 4867 (2004)
- Fernandez L, Carrero H, Electrochim. Acta, 50(5), 1233 (2005)
- Li F, Tang CF, Liu SF, Ma GR, Electrochim. Acta, 55(3), 838 (2010)
- Antiochia R, Gorton L, Biosens. Bioelectron., 22, 2611 (2007)
- Lau KT, de Fortescu SAL, Murphy LJ, Slater JM, Electroanal., 15, 975 (2003)
- Khan GF, Ohwa M, Wernet W, Anal. Chem., 68, 939 (1996)
- Ivanov I, Vidakovic-Koch T, Sundmacher K, J. Power Sources, 196(22), 9260 (2011)
- Du P, Liu SN, Wu P, Cai CX, Electrochim. Acta, 52(23), 6534 (2007)
- Holzinger M, Goff AL, Cosnier S, Electrochim. Acta., 82, 179 (2012)
- Kim JB, Jia H, Wang P, Biotechnol. Adv., 24, 296 (2006)
- Komaba S, Mitsuhashi T, Shiraishi S, Electrochemistry., 76, 55 (2008)
- Yabuki S, Mizutani F, Hirata Y, J. Electroanal. Chem., 468(1), 117 (1999)
- Osaka T, Komaba S, Amano A, Fujino Y, Mor H, Sens.Actuators B., 65, 58 (2000)
- Bard AJ, Faulkner LR, Electrochemical Methods: Fundamentals and Applications, 2nded., John Wiley: New York (2001)