화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.134, No.38, 15992-15999, 2012
Tunable Cross Coupling of Silanols: Selective Synthesis of Heavily Substituted Allenes and Butadienes
1,3-Dienyl-2-silanols with a wide range of substitution patterns are readily obtained by palladium-catalyzed silaboration of 1,3-enynes followed by Suzuki-Miyaura cross coupling with aryl bromides. Subsequent Hiyama-Denmark cross coupling with aryl iodides provides either 1,3- or 1,2-dienes in high yields. The site selectivity can be fully controlled by the choice of activator used in the coupling reaction. In the presence of strong bases such as NaOt-Bu, KOt-Bu, and NaH, clean formation of 1,2-dienes takes place via allylic rearrangement. In contrast, stereo- and site-selective formation of tetra- and trisubstituted 1,3-dienes results from use of Ag2O and Bu4NF center dot 3H(2)O, respectively, as activators. Under microwave heating at 100 degrees C the base-mediated cross couplings are largely accelerated and are completed within one hour or less. The ratio of diastereomeric allenes varies depending on the substitution pattern of the silanol and ranges from >99:1 to 52:48.