Journal of Physical Chemistry B, Vol.116, No.35, 10430-10436, 2012
Bromine-Sensitized Solar Photolysis of CO2
Direct photochemical reduction of CO2 has generally been accomplished by using transition-metal compounds as electron transfer reagents. Here, we show that elemental bromine can function as an alternative photosensitizer. When sunlight is tightly focused on mixtures of CO2 and Br-2, in the presence of a polar adsorbent such as silica gel, glass wool, alumina, or titania, a metastable red adduct is formed within seconds and concentrates at the point of illumination. Further illumination causes deposition of a stable black film on the polar adsorbent. Mass spectrometry of the cold-trapped red intermediate shows clusters of peaks corresponding to the expected distribution of isotopomers of C2O4Br4+, as well as of C2O4Br3+. DFT computations indicate that the lowest-energy species with the formula C2O4Br4 is trans-2,4-dibromo-2,4-dihypobromo-1,3-dioxetane. Formation of this molecule from (2CO(2) + 2Br(2)) would require a minimum of 3 visible photons, two of which would hypothetically be used in formation of as-yet undetected CO2Br2 and the third, in a subsequent photodimerization. By elemental analysis, the final amorphous solid product contains a C/Br atomic ratio >12, suggesting that Br2 is acting photocatalytically. Even with a poorly optimized optical system, the reaction rate has reached as high as 1.6 mg reduced C with 40 s of solar collection using a 30 cm diameter paraboloid reflector. This rate is consistent with the storage of approximately 1% of incident solar energy.