화학공학소재연구정보센터
Inorganic Chemistry, Vol.51, No.18, 9757-9765, 2012
Lithium Dihydroborate: First-Principles Structure Prediction of LiBH2
We report a first-principles structure prediction of the LiBH2, which structures are modeled by using four formula units per unit cell without symmetry restrictions. The computational methodology combines a simulated annealing approach and density functional total energy calculations for crystalline solid structures. The predicted lowest energy structure shows the formation of linear anionic chains, (1)(infinity)[BH2] enthalpy of formation at 0 K equal to -90.07 kJ/mol. Ring structures, in particular with butterfly and planar square topologies, are found to be stable but well above the ground state by 20.26 and 12.92 kJ/mol, respectively. All convergent structures fall in the symmetry families monoclinic, tetragonal, and orthorhombic. For the representative structures of each family group, simulated X-ray diffraction patterns and infrared spectra are reported.