화학공학소재연구정보센터
Industrial & Engineering Chemistry Research, Vol.51, No.36, 11700-11709, 2012
Copper Ferrite-Graphene Hybrid: A Multifunctional Heteroarchitecture for Photocatalysis and Energy Storage
A straightforward strategy is designed for the fabrication of CuFe2O4-graphene heteroarchitecture via a one-step hydrothermal route to allow multifunctional properties, i.e., magnetic cycling, high photocatalytic activity under visible light irradiation, and excellent electrochemical behaviors for use as the anode in lithium-ion batteries (LIBs). Transmission electron microscopy (TEM) observations indicate that graphene sheets are exfoliated and decorated with hexagonal CuFe2O4 nanoflakes. The photocatalytic activity measurements demonstrate that the combination of CuFe2O4 and graphene results in a dramatic conversion of the inert CuFe2O4 into a highly active catalyst for the degradation of methylene blue (MB) under visible light irradiation. CuFe2O4 nanoparticles themselves have excellent magnetic properties, which makes the CuFe2O4-graphene heteroarchitecture magnetically recyclable in a suspension system. It should be pointed out that the CuFe2O4-graphene (with 25 wt % graphene) heteroarchitecture as anode material for LIBs shows a high specific reversible capacity up to 1165 mAh g(-1) with good cycling stability and rate capability. The superior photocatalytic activity and electrochemical performance of the CuFe2O4-graphene nanocomposite can be attributed to its unique heteroarchitechture, which provides the remarkable synergistic effect between the CuFe2O4 nanoflakes and the graphene sheets.