화학공학소재연구정보센터
Chinese Journal of Chemical Engineering, Vol.20, No.5, 1008-1015, 2012
Effect of Moisture on Partitioning of Heavy Metals in Incineration of Municipal Solid Waste
The effect of moisture in municipal solid waste (MSW) on partitioning of lead (Pb), zinc (Zn), copper (Cu) and cadmium (Cd) was studied in a laboratory tubular furnace by using simulated MSW. The moisture in MSW influences heavy metals in following ways, to increase the moisture in flue gas and decrease the combustion temperature, to prolong the combustion time, and to prolong the releasing time of volatiles with the furnace temperature decreased by increasing the moisture. The volatilization of Pb, Zn and Cd was enhanced by increasing the moisture in MSW because of the prolonged combustion time. For Pb and Zn, the combustion time was important at higher temperature, while for Cd, it was important at low temperature. The moisture content showed slight effect on Cu partitioning. When extra chlorine was added to MSW, such as 1%PVC + 0.5%NaCl, the volatilization of Pb, Zn and Cu was enhanced by increasing the moisture because water evaporation reduced the temperature and increased devolatilization time. At higher temperature, NaCl tends to decompose and generates more free chlorine, producing more metal chlorides. Since Cd is a strong volatile heavy metal in MSW, the effect of moisture content on its volatilization is less than that of Pb, Zn or Cu during the MSW incineration.