Automatica, Vol.48, No.9, 2159-2167, 2012
Stabilizing and robust fractional order PI controller synthesis for first order plus time delay systems
For all the stable first order plus time delay (FOPTD) systems, a fractional order proportional integral (FOPI) or a traditional integer order proportional integral derivative (IOPID) controller can be designed to fulfill a flat phase constraint and two design specifications simultaneously: gain crossover frequency and phase margin. In this paper, a guideline for choosing two feasible or achievable specifications, and a new FOPI/IOPID controller synthesis are proposed for all the stable FOPTD systems. Using this synthesis scheme, the complete feasible region of two specifications can be obtained and visualized in the plane. With this region as the prior knowledge, all combinations of two specifications can be verified before the controller design. Especially, it is interesting to compare the areas of these two feasible regions for the IOPID and FOPI controllers. This area comparison reveals, for the first time, the potential advantages of one controller over the other in terms of achievable performances. A simulation illustration is presented to show the effectiveness and the performance of the designed FOPI controller compared with the optimized integer order PI controller and the IOPID controller designed following the same synthesis for the FOPI in this paper. (C) 2012 Elsevier Ltd. All rights reserved.
Keywords:Fractional order proportional integral controller;Integer order proportional integral derivative controller;First order plus time delay system;Stability region;Feasible region;Robustness;Flat phase