화학공학소재연구정보센터
Applied Biochemistry and Biotechnology, Vol.168, No.3, 550-567, 2012
Extracellular Production of Novel Halotolerant, Thermostable, and Alkali-Stable Carboxymethyl Cellulase by Marine Bacterium Marinimicrobium sp LS-A18
Cellulases which are active and stable under extreme conditions have attracted considerable attention because of their potential industrial applications. Marinimicrobium sp. LS-A18 showed high extracellular carboxymethylcellulase (CMCase) activity when grown on mineral salt medium containing carboxymethylcellulose as the sole carbon source. Maximum CMCase activity was obtained at 55A degrees C and pH 7.0 in the absence of NaCl. Under the optimized fermentation conditions, the yield of CMCase was increased up to 2.5 U/ml, which was 3.1-fold higher than that before optimization. The enzyme retained 84 % of residual activity after incubation at 60A degrees C for 1 h and more than 88 % of residual activity after incubation for 72 h in the presence of different pH (5-11) and NaCl concentrations (0-25 %, w/v), indicating it was halotolerant, thermostable and alkali-stable. These characteristics made the CMCase from Marinimicrobium sp. LS-A18 as a potentially novel biocatalyst in biotechnological and industrial applications.