화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.19, No.1, 256-262, January, 2013
Impedance characteristics and electrical double-layer capacitance of composite polystyrene-cobalt-arsenate membrane
E-mail:,
In continuation of our previous work with composite polystyrene-cobalt-arsenate (PS-Co-As), we further extended impedance measurements. All calculations reported were extracted from experiments carried out in the frequency range of 1.5 kHz and different concentrations (0.0001 ≤ c(M) ≤ 1) of KCl and NaCl at isothermal temperature (25 ± 0.1 ℃). The membrane capacitance and resistance measurements were observed to depend on the concentration and the applied frequency of the electrolyte. The observed capacitances and resistances were used to calculate the membrane resistances (RM), capacitance (CM), reactance (XX), and also derive the impedance (Z). At higher frequencies, the capacitances became low and the impedance decreased with increasing frequency with a corresponding increase in the measured phase angle. On the other hand at the highest frequencies attainable, the phase angle became low. At low frequencies, the phase angle was become independent of the cation, while the impedance showed a clear dependence. The diffused double-layer polarization charge on the geometric capacitor played important role by affecting the overall membrane capacitance. The applied frequencies affected the double-layer capacitance due to the movement of ions across the membrane. At the membrane-electrolyte interface, the electrical double-layer was influenced in addition to being controlled by the transport of ions.
  1. Faridbod F, Ganjali MR, Dinarvand R, Norouzi P, African Journal of Biotechnology., 6, 2960 (2007)
  2. Bakker E, Pretsch E, Analytical Chemistry., 74, 420A (2002)
  3. Peper S, Gonczy C, Runde W, Talanta., 67, 713 (2005)
  4. Chmiola J, Largeot C, Taberna PL, Simon P, Gogotsi Y, Science, 328(5977), 480 (2010)
  5. Armand M, Endres F, MacFarlane DR, Ohno H, Scrosati B, Nature Materials., 8, 621 (2009)
  6. Kornyshev AA, J. Phys. Chem. B, 111(20), 5545 (2007)
  7. Kilic MS, Bazant MZ, Ajdari A, Physical Review E., 75, 021502 (2007)
  8. Islam MM, Alam MT, Okajima T, Ohsaka T, Journal of Physical Chemistry C., 113, 3386 (2009)
  9. Lockett V, Horne M, Sedev R, Rodopoulos T, Ralston J, Physical Chemistry Chemical Physics., 12, 12499 (2010)
  10. Mijovic J, Bellucci F, Trends in Polymer Science., 4, 74 (1996)
  11. Arfin T, Rafiuddin, Electrochim. Acta, 56(22), 7476 (2011)
  12. Arfin T, Rafiuddin, Desalination., 284, 100 (2012)
  13. Arfin T, Rafiuddin, Journal of Electroanalytical Chemistry., 636, 113 (2009)
  14. Arfin T, Rafiuddin, Electrochim. Acta, 54(27), 6928 (2009)
  15. Arfin T, Rafiuddin, Electrochim. Acta, 55(28), 8628 (2010)
  16. Arfin T, Jabeen F, Kriek RJ, Desalination, 274(1-3), 206 (2011)
  17. de Lara R, Benavente J, J. Colloid Interface Sci., 310(2), 519 (2007)
  18. Oleinikova M, Munˇ oz M, Benaventa J, Valiente M, Langmuir., 16, 716 (2007)
  19. Wandlowski T, Holub K, Marecek V, Samec Z, Electrochim. Acta, 40(18), 2887 (1995)
  20. Hanai T, Haydon DA, Taylor J, Proceedings of the Royal Society of London., 281A, 377 (1964)
  21. Hanai T, Haydon DA, Taylor J, Journal of Theoretical Biology., 9, 278 (1965)
  22. Linsford RG, Electrochemical Science, Technology of Polymers, vol. 1, Elsevier, New York (1987)
  23. Kotz R, Carlen M, Electrochim. Acta, 45(15-16), 2483 (2000)
  24. Lakshminarayanaiah N, Shanes AM, Journal of Applied Polymer Science., 9, 689 (1965)
  25. Tatarog˘lu A, Altindal S, Microelectronic Engineering., 85, 2256 (2008)
  26. Turut A, Sag˘lam M, Physica B., 179, 285 (1992)
  27. Kowal J, Budde-Meiwes H, Sauer DU, Journal of Power Sources., 207, 45 (2012)
  28. Malmgren-Hansen B, Sorensen TS, Jensen JB, Hennenberg M, Journal of Colloid and Interface Science., 130, 359 (1989)
  29. Conway BE, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, Kluwer Academic/Plenum Publishers, New York (1999)
  30. Siinor L, Siimenson C, Ivanisˇtsˇev V, Lust K, Lust E, Journal of Electroanalytical Chemistry., 668, 30 (2012)
  31. Vorotyntsev MA, Electrochim. Acta, 47(13-14), 2071 (2002)
  32. Sistat P, Kozmai A, Pismenskaya N, Larchet C, Pourcelly G, Nikonenko V, Electrochim. Acta, 53(22), 6380 (2008)
  33. Freger V, Electrochemistry Communications., 7, 957 (2005)
  34. Park JS, Choi JH, Yeon KH, Moon SH, J. Colloid Interface Sci., 294(1), 129 (2006)
  35. Armstrong RD, Archer WI, Journal of Electroanalytical Chemistry., 87, 221 (1978)
  36. Fedorov MV, Kornyshev AA, Electrochim. Acta, 53(23), 6835 (2008)
  37. Schmickler W, Santos E, Interfacial Electrochemistry, 2nd ed., Springer, Berlin,, 88 (2010)
  38. La¨uger P, Lesslauer W, Marti E, Richter J, Biochimica et Biophysica Acta., 135, 20 (1967)
  39. Parsonage EE, J. Colloid Interface Sci., 177(2), 353 (1996)
  40. Islam N, Bulla NA, Islam S, J. Membr. Sci., 282(1-2), 89 (2006)