화학공학소재연구정보센터
Thin Solid Films, Vol.520, No.23, 6947-6953, 2012
Role of hydrogen in Sb film deposition and characterization of Sb and GexSby films deposited by cyclic plasma enhanced chemical vapor deposition using metal-organic precursors
To meet increasing demands for chemical vapor deposition methods for high performance phase-change memory, cyclic plasma enhanced chemical vapor deposition of Sb and GexSby phase-change films and characterization of their properties were performed. Two cycle sequences were designed to investigate the role of hydrogen gas as a reduction gas during Sb film deposition. Hydrogen gas was not introduced into the reaction chamber during the purge step in cycle sequence A and was introduced during the purge step for cycle sequence B. The role of hydrogen gas was investigated by comparing the results obtained from these two cycle sequences and was concluded to exert an effect by a combination of precursor decomposition, surface maintenance as a hydrogen termination agent, and surface etching. These roles of hydrogen gas are discussed through consideration of changes in deposition rates, the oxygen concentration on the surface of the Sb film, and observations of film surface morphology. Based on these results, GexSby phase-change films were deposited with an adequate flow rate of hydrogen gas. The Ge and Sb composition of the film was controlled with the designed cycle sequences. A strong oxygen affinity for Ge was observed during the X-ray photoelectron spectroscopy analysis of Sb 3d, Sb 4d, and Ge 3d orbitals. Based on the XPS results, the ratios of Ge to Sb were calculated to be Ge0.32Sb0.68, Ge0.38Sb0.62, Ge0.44Sb0.56, Ge0.51Sb0.49 and Ge0.67Sb0.33 for the G1S7, G1S3, G1S2, G1S1, and G2S1 cycles, respectively. Crystal structures of Sb, Ge, and the GeSb metastable phase were observed with various GexSby film compositions. Sb crystallinity decreased with respect to Ge crystallinity by increasing the Ge fraction. A current-voltage curve was introduced, and an electro-switching phenomenon was clearly generated at a typical voltage, Vth. Vth values increased in conjunction with an increased proportion of Ge. The Sb crystallinity decrease and Vth increase were explained via the bonding characteristics of each element. (C) 2012 Elsevier B.V. All rights reserved.