Thin Solid Films, Vol.520, No.7, 2960-2965, 2012
Tailoring the optoelectronic properties of donor-acceptor-donor type pi-conjugated polymers via incorporating different electron-acceptor moieties
Syntheses of donor-acceptor-donor type of pi-conjugated monomers were performed to examine the effect of the acceptor units' strength on the electrochemical and optoelectrochemical properties of the resulting monomer and polymer. Palladium catalyzed Stille cross-coupling reaction of an organotin reagent with an organic electrophile was used for the synthesis of target monomers, 5,8-bis(4-hexylthiophen-2-yl)-2-(2,3-dihydrobenzo[b][1,4]clioxin-6-y1)-3-(2,3-dihydrobenzo[b][1,41dioxin-7-yl)quinoxaline (DBQHT) and 10,13-bis(4-hexylthiophen-2-yl)dibenzo[a,c]phenazine (PHEHT). The presence of the strong electron-donating ethylenedioxy groups on pendant phenyl rings increased electron density on DBQHT, thus the oxidation potential of DBQHT shifts to a lower value than that of PHEHT. The pi-pi* absorption maximum of PPHEHT was about 40 nm red-shifted compare to that of PDBQHT, which can be attributed to the increase of the effective conjugation and coplanarity of PPHEHT relative to PDBQHT via using phenanthrene fused quinoxaline unit as the acceptor. The electronic band gap of polymer, defined as the onset of the pi-pi* transition, is found to be 1.65 eV for PPHEHT and 1.82 eV for PDBQHT. Both polymer films showed multi-color electrochromism. PDBQHT can be switched between a red neutral state and a green oxidized state with two intermediate states; purple and brown. PPHEHT also shows multicolored electrochromic behavior with three distinct states: a blue neutral state, a gray intermediate state, and a green oxidized state. (C) 2011 Elsevier B.V. All rights reserved.