화학공학소재연구정보센터
Thin Solid Films, Vol.520, No.6, 2106-2109, 2012
Electrical properties of Poly(ethylene glycol dimethacrylate-n-vinyl imidazole)/Single Walled Carbon Nanotubes/n-Si Schottky diodes formed by surface polymerization of Single Walled Carbon Nanotubes
In this paper we report the electrical characteristics of the Schottky diodes formed by surface polymerization of the Poly(ethylene glycol dimethanylate-n-vinyl imidazole)/Single Walled Carbon Nanotubes on n-Si The Single Walled Carbon Nanotubes were synthesized by CVD method. The main electrical properties of the Poly(ethylene glycol dimethanylate-n-vinyl imidazole)/Single Walled Carbon Nanotubes/n-Si have been investigated through the barrier heights, the ideality factors and the impurity density distribution, by using current-voltage and reverse bias capacitance voltage characteristics. Electrical measurements were carried out at room temperature. Poly(ethylene glycol dimethacrylate-n-vinyl imidazole)/Single Walled Carbon Nanotubes/n-Si Schottky diode current-voltage characteristics display low reverse-bias leakage currents and average barrier heights of 0.61 +/- 0.02 eV and 0.72 +/- 0.02 eV obtained from both current-voltage and capacitance-voltage measurements at room temperature, respectively. (C) 2011 Elsevier B.V. All rights reserved.