화학공학소재연구정보센터
Thin Solid Films, Vol.520, No.1, 53-56, 2011
Effect of oxygen incorporation on the vibrational properties of Al0.2Ga0.3In0.5P:Be films
The vibrational properties of Al0.2Ga0.3In0.5P:Be films grown on (100) GaAs substrates by solid source molecular beam epitaxy varying the phosphorous cracking-zone temperature (PCT) were studied by Raman spectroscopy. The Raman-intensity ratio between the allowed longitudinal optical and the forbidden transverse optical (TO) phonons, and the full width at half maximum of their Lorentzian fits were used to characterize the crystalline quality of the films. The Raman spectra from the samples show changes in the shape and intensity of phonon resonances depending on the PCT variation, indicating that the disorder in the lattice increases with PCT. The increasing disorder is related to the inclusion of oxygen, which act as a non-intentional perturbing impurity in the lattice. In addition, a vibrational mode located at 598 cm(-1) related to a forbidden InP-like TO phonon resonance was correlated with oxygen-induced disorder. Photoluminescence at room temperature shows that the high inclusion of oxygen also deteriorates the optical properties of the samples, by introducing non-radiative recombination centers. (C) 2011 Elsevier B.V. All rights reserved.