Thin Solid Films, Vol.519, No.11, 3603-3607, 2011
Vapor-solid-solid growth of crystalline silicon nanowires using anodic aluminum oxide template
Silicon nanowires (SiNWs) were grown at low temperatures close to metal silicon eutectic point on a silicon substrate using gold catalyst coupled with assistance of the aluminum anodic oxide template. Either a vapor-solid-solid (VSS) growth process below metal silicon eutectic temperature or a vapor-liquid-solid (VLS) process at slightly higher temperatures was observed. The transmission electron microscopy coupled with both the X-ray energy dispersive spectroscopy and the selected area electron diffraction was adopted to characterize the SiNWs. Although the mechanism triggering the VSS process is still not clear, both the geometric and morphological characteristics of the SiNWs grown by the VSS process are discussed and compared with the SiNWs grown by the VLS process. The VSS SiNWs have a much slower growth rate (less than 100 nm/h), a smaller and more uniform diameter (in the range of 15.22 nm) due to a much slower rate of silicon diffusion and much smaller amount of silicon (6.8 wt.%) dissolved in the solid nanocatalyst. (C) 2011 Elsevier B.V. All rights reserved.
Keywords:Silicon nanowires;Vapor-solid-solid growth;Aluminum anodic oxide;Transmission electron microscopy