화학공학소재연구정보센터
Thin Solid Films, Vol.519, No.9, 2613-2616, 2011
Terahertz optical-Hall effect for multiple valley band materials: n-type silicon
The optical-Hall effect comprises generalized ellipsometry at long wavelengths on samples with free-charge carriers placed within external magnetic fields. Measurement of the anisotropic magneto-optic response allows for the determination of the free-charge carrier properties including spatial anisotropy. In this work we employ the optical-Hall effect at terahertz frequencies for analysis of free-charge carrier properties in multiple valley band materials, for which the optical free-charge carrier contributions originate from multiple Brillouin-zone conduction or valence band minima or maxima, respectively. We investigate exemplarily the room temperature optical-Hall effect in low phosphorous-doped n-type silicon where free electrons are located in six equivalent conduction-band minima near the X-point. We simultaneously determine their free-charge carrier concentration, mobility, and longitudinal and transverse effective mass parameters. (C) 2010 Elsevier B.V. All rights reserved.