Thin Solid Films, Vol.518, No.22, 6352-6356, 2010
Inkjet printing of conductive Ag lines and their electrical and mechanical characterization
This paper aims to investigate the effects of the substrate, the printed line thickness and the sintering temperature on the electrical resistivity. Young's modulus and hardness of inkjet-printed Ag thin films. Electrical resistivity was determined from the four-point method and Young's modulus and hardness were evaluated from nanoindentation test. Several models for evaluating Young's modulus and hardness were used and compared to account for the influence of substrates. It is noted that Ag lines on glass have higher resistance and resistivity than those on polyimide (PI) since Ag lines on glass and PI have tensile and compressive residual thermal stresses, respectively, due to the difference of coefficient of thermal expansion between Ag lines and substrates. Young's modulus of Ag films on glass can be predicted by the modified King and Bec models considering the substrate effect, but these models offer unstable results for Ag films on PI. Young's modulus and hardness of Ag films increase with the sintering temperature, and they are little affected by the film thickness when fully sintered. (c) 2010 Elsevier B.V. All rights reserved.
Keywords:Inkjet printing;Resistivity;Young's modulus;Hardness;Nanoindentation;Residual thermal stress