Thin Solid Films, Vol.518, No.12, 3260-3266, 2010
Numerical simulation of residual stresses in diamond coating on Ti-6Al-4V substrate
In this paper, we present numerical simulations of the residual stresses developed between diamond coatings and Ti-6Al-4V substrates when using chemical vapour deposition technique. The large difference in thermal expansion coefficients of diamond and titanium alloys results in high residual stresses in the diamond film. This could lead to interfacial cracking and material failure. The finite element method was used to simulate the cooling process of diamond films at various thicknesses and deposited at temperatures ranging from 600 degrees C to 900 degrees C. The influence of different parameters such as temperature, film thickness, material characteristics, geometry and edge effects are investigated for different case geometries. The film debonding and cracking is discussed and numerical results are compared with existing experimental and numerical results. Finally, some propositions are made to enhance the experimental process in order to reduce the residual stress intensities and the possible material degradation. (C) 2010 Elsevier B.V. All rights reserved.