Thin Solid Films, Vol.518, No.5, 1489-1492, 2009
Structural and optical properties of ultrananocrystalline diamond/InGaAs/GaAs quantum dot structures
The combination of the unique properties of ultrananocrystalline diamond (UNCD) films and of semiconductor quantum dot (QD) structures could significantly improve the performance of different electronic and optoelectronic devices, where e.g. good thermal management and advanced mechanical parameters are required. In the current work quantum dot InGaAs/GaAs heterostructures have been grown by molecular beam epitaxy (MBE) with different densities between 1.6 x 10(10) cm(-2) and 1.6 x 10(11) cm(-2) controlled by the substrate temperature in the range between 490 and 515 degrees C These structures were overgrown with UNCD by microwave plasma chemical vapor deposition (MWCVD) using methane/nitrogen mixtures at 570 degrees C. Scanning electron microscopy (SEM) reveals that without ultrasonic pretreatment the diamond nucleation density on QD structures is low and only separate islands of UNCD are deposited, while after pretreatment thin closed films are formed. From the cross-section SEM images a growth rate of ca. 3 nm/min is estimated which is very close to that on silicon at the same deposition conditions. The UNCD coatings exhibit a morphology consisting of two types of structures as shown by atomic force microscopy (AFM). The first one includes nodules with diameters between 180 and 350 nm varying with the density of the underlying QDs; the second is formed by a kind of granular substructure of these nodules with diameters of about 40 nm for all QD densities. The optical properties were investigated by photoluminescence (PL) spectroscopy before and after the deposition of UNCD. The PL signals of QD structures overgrown with UNCD, although with decreased intensity, remain almost unchanged with respect to the peak positions and widths, revealing that the UNCD/QD structures retain the optical properties of uncoated InGaAs/GaAs quantum dots. (C) 2009 Elsevier B.V. All rights reserved.