화학공학소재연구정보센터
Thin Solid Films, Vol.517, No.24, 6747-6752, 2009
Analysis of the early growth mechanisms during the chemical deposition of CdS thin films by spectroscopic ellipsometry
Chemically deposited CdS thin films were analyzed in this work by means of the spectroscopic ellipsometry technique. The CdS thin films were deposited from an ammonia-free process at short durations in order to obtain information about the layer microstructure and kinetic growth process. We found that the conditions of the ammonia-free reaction solution promote the ion-by-ion deposition process at the early growth stages yielding a compact, high refraction index and highly crystalline oriented CdS layers. Using a concentration of 1.82 mg/ml of cadmium in the reaction solution, the resulting films possess a double layer microstructure which consists of an inner compact layer and an external porous one. The inner layer is developed during the first 15 min of deposition time and it reaches a thickness around of 80 nm. After this time and on this inner layer of CdS, it grows an external porous layer whose thickness increases with the deposition time. The formation of the CdS compact layer at the early stages is related with the ion-by-ion growth mechanism. The subsequent CdS porous layer is formed during the cluster-by-cluster growth stage at longer deposition times. By reducing the cadmium concentration in reaction solution down to 0.76 mg/ml, maintaining constant molar ratio concentrations of Cd/complexing and Cd/thiourea, the chemically deposited CdS films develop only the inner compact layer with a thickness of about 80 nm after 35 min of deposition time. (C) 2009 Elsevier B.V. All rights reserved.