화학공학소재연구정보센터
Journal of Applied Polymer Science, Vol.68, No.9, 1387-1395, 1998
Dynamic mechanical properties of the chemical oxidation on UHMWPE fibers for improved adhesion to epoxy resin matrix
The improved adhesion of an ultrahigh molecular weight polyethylene (UHMWPE) fiber to an epoxy from applying polypyrrole (PPy) was investigated using chemical oxidation polymerization. The interfacial shear strength of the PPy-treated fiber/epoxy was enhanced by 280%. Such an improvement was verified in the previous research using a pull-out test. Dynamic mechanical analysis (DMA) and a morphological examination were performed to evaluate the characteristics of the molecular motions of the UHMWPE fiber/PPy/epoxy composites. Two composite materials, a UHMWPE fiber/PPy and a UHMWPE fiber/PPy/epoxy, were tested by DMA. The results show that both the alpha(c) transitions of the PPy-treated fibers and its composites shift toward higher temperature. In the SEM photos of the UHMWPE fiber/PPy, a very clear roughening effect on the surface of PPy-treated UHMWPE fiber was also observed, which contributes much to the modification of the interface to the epoxy. The results show that an adhesion improvement mechanism for the PPy-treaded UHMWPE fiber is due to the surface roughening effect and the intermolecular interaction.