SPE Formation Evaluation, Vol.11, No.2, 108-113, 1996
Relationship of core-scale heterogeneity with non-Darcy flow coefficients
An experimental research program to investigate the effects of liquid saturations upon non-Darcy flow coefficients is presented. The presence of a wetting phase fluid plays an important role in high velocity flow of a gas well, producing condensate or water, and in propped fractures containing liquid saturations. This study initially examines the errors commonly encountered but ignored in evaluating the permeabilities and the coefficient of inertial resistance during the flow of gases through porous media. Experimental techniques, such as constant overburden pressure, changing overburden pressure, forward flow, and backpressure flow, are applied to optimize and obtain accurate evaluations of Klinkenberg parameters and inertial resistance coefficients for a selection of Omani reservoir cores. Gas-slippage factor significantly influences the derived viscous and inertial coefficients from high-velocity gas flow data. An increasing wetting phase saturation increases the non-Darcy coefficient up to thirty-fold. Analysis of the experimental data revealed that unique relationships exist between the non-Darcy flow coefficients and the equivalent liquid permeability, porosity, and liquid saturation. Heterogeneity of the core as mapped by pore-scale measurements provide an insight into the mechanism for such a large increase in the non-Darcy coefficients.