SIAM Journal on Control and Optimization, Vol.48, No.8, 5214-5240, 2010
CONTINUOUS-TIME AVERAGE-PRESERVING OPINION DYNAMICS WITH OPINION-DEPENDENT COMMUNICATIONS
We study a simple continuous-time multiagent system related to Krause's model of opinion dynamics: each agent holds a real value, and this value is continuously attracted by every other value differing from it by less than 1, with an intensity proportional to the difference. We prove convergence to a set of clusters, with the agents in each cluster sharing a common value, and provide a lower bound on the distance between clusters at a stable equilibrium, under a suitable notion of multiagent system stability. To better understand the behavior of the system for a large number of agents, we introduce a variant involving a continuum of agents. We prove, under some conditions, the existence of a solution to the system dynamics, convergence to clusters, and a nontrivial lower bound on the distance between clusters. Finally, we establish that the continuum model accurately represents the asymptotic behavior of a system with a finite but large number of agents.