화학공학소재연구정보센터
SIAM Journal on Control and Optimization, Vol.45, No.5, 1915-1930, 2006
Stability and stabilization of continuous-time switched linear systems
This paper addresses two strategies for the stabilization of continuous-time, switched linear systems. The first one is of open loop nature (trajectory independent) and is based on the determination of a minimum dwell time by means of a family of quadratic Lyapunov functions. The relevant point on dwell time calculation is that the proposed stability condition does not require the Lyapunov function to be uniformly decreasing at every switching time. The second one is of closed loop nature (trajectory dependent) and is designed from the solution of what we call Lyapunov Metzler inequalities from which the stability condition (including chattering) is expressed. Being nonconvex, a more conservative but simpler-to-solve version of the Lyapunov-Metzler inequalities is provided. The theoretical results are illustrated by means of examples.