Science, Vol.331, No.6024, 1579-1583, 2011
From a Single-Band Metal to a High-Temperature Superconductor via Two Thermal Phase Transitions
The nature of the pseudogap phase of cuprate high-temperature superconductors is a major unsolved problem in condensed matter physics. We studied the commencement of the pseudogap state at temperature T* using three different techniques (angle-resolved photoemission spectroscopy, polar Kerr effect, and time-resolved reflectivity) on the same optimally doped Bi2201 crystals. We observed the coincident, abrupt onset at T* of a particle-hole asymmetric antinodal gap in the electronic spectrum, a Kerr rotation in the reflected light polarization, and a change in the ultrafast relaxational dynamics, consistent with a phase transition. Upon further cooling, spectroscopic signatures of superconductivity begin to grow close to the superconducting transition temperature (T(c)), entangled in an energy-momentum-dependent manner with the preexisting pseudogap features, ushering in a ground state with coexisting orders.