Process Safety and Environmental Protection, Vol.88, No.3, 191-199, 2010
Modelling of BP Texas City refinery accident using dynamic risk assessment approach
Process industries involve handling of hazardous substances which on release may potentially cause catastrophic consequences in terms of assets lost, human fatalities or injuries and loss of public confidence of the company. In spite of using endless end-of-the-pipe safety systems, tragic accidents such as BP Texas City refinery still occur. One of the main reasons of such rare but catastrophic events is lack of effective monitoring and modelling approaches that provide early warnings and help to prevent such event. To develop a predictive model one has to rely on past occurrence data, as such events are rare, enough data are usually not available to better understand and model such behavior. In such situations, it is advisable to use near misses and incident data to predict system performance and estimate accident likelihood. This paper is an attempt to demonstrate testing and validation of one such approach, dynamic risk assessment, using data from the BP Texas City refinery incident. Dynamic risk assessment is a novel approach which integrates Bayesian failure updating mechanism with the consequence assessment. The implementation of this methodology to the BP Texas City incident proves that the approach has the ability to learn from near misses, incident, past accidents and predict event occurrence likelihood in the next time interval. (C) 2010 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.